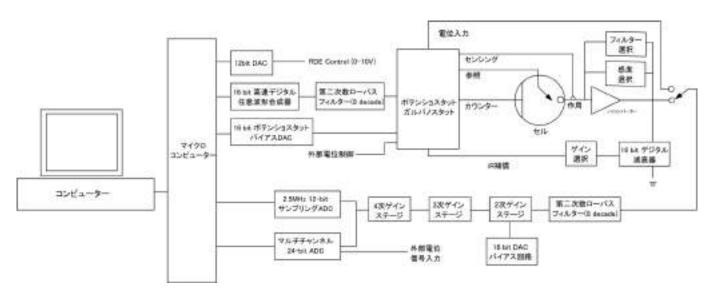

モデル **1100C** 電気化学アナライザー 取り扱い説明書

目次

1章	. はじめに	
	紹介	1
	電気化学テクニック	2
	ソフトウェアーの特長	4
	必要なシステム構成	7
	ハードウェアーの仕様	7
2章	. スタート	
	組込み	8
	役に立つヒント	10
	USB ドライバーのインストール	11
	安全な本体のセットアップ	13
3章	. ファイルメニュー	
	ファイルを開くコマンド	15
	名前を付けて保存コマンド	16
	削除コマンド	17
	修復コマンド	18
	機器のプロクラムを更新コマンド	18
	データファイル一覧コマンド	19
	テキスト変換コマンド	20
	テキストファイルフォーマットコマンド	23
	テキストファイルインポートコマンド	25
	印刷コマンド	26
	多重ファイル印刷コマンド	27
	印刷セットアップコマンド	28
	終了コマンド	29
4章	. セットアップメニュー	
	テクニックコマンド	30
	パラメータコマンド	31
	スイープテクニック	32
	サイクリックボルタンメトリー パラメータ	34
	リニアースィープボルタンメトリーパラメータ	36
	ターフェルプロットパラメータ	38
	ポテンシャルテクニック	39
	クロノアンペロメトリーパラメータ	42
	クロノクーロメトリーパラメータ	44
	パルステクニック i	46

ノーマルバルステクニック	48
階段波ボルタンメトリーパラメータ	50
微分パルスボルタンメトリーパラメータ	51
ノーマルパルスボルタンメトリーパラメータ	52
微分ノーマルパルスボルタンメトリーパラメータ	53
矩形波テクニック	54
矩形波ボルタンメトリーパラメータ	55
AC. テクニック	56
交流ボルタンメトリーパラメータ	58
第二高調波交流ボルタンメトリーパラメータ	59
アンペロメトリーテクニック	60
アンペロメトリー i-t 曲線パラメータ	61
微分パルスアンペロメトリーパラメータ	62
ダブル微分パルスアンペロメトリーパラメータ	64
トリプルパルスアンペロメトリーパラメータ	67
クーロメトリーによるバルク電気分解	69
バルク電気分解-クーロメトリーパラメータ	70
ハイドロダイナミック (HDM) テクニック	71
ハイドロダイナミック変調ボルタンメトリーパラメータ	73
スイープステップファンクションパラメータ	74
マルチポテンシャルステップパラメータ	76
クロノポテンショメトリーパラメータ	77
電流ランプ-クロノポテンショメトリーパラメータ	79
マルチ電流ステップパラメータ	80
ポテンショメトリックストリッピング分析パラメータ	81
オープンサーキットポテンシャル-タイムパラメータ	82
システムコマンド	83
ハードウェアーテストコマンド	85
5 章. コントロールメニュー	
測定コマンド	87
待機/継続コマンド	88
測定停止コマンド	89
スキャン反転コマンド	89
測定状況コマンド	90
繰り返し測定コマンド	93
マルチプレクサーコマンド	96
マクロコマンド	98
オープンサーキットポテンシャルコマンド	111
iR 補償コマンド	112
iR 補償	114
フィルター設定コマンド	116

	セルコマンド	118
	ステップファンクションコマンド	120
	前処理コマンド	121
	回転電極コマンド	122
	ストリッピングモードコマンド	123
6章.	グラフィックスメニュー	
	現在のデータプロットコマンド	124
	データ重ね書きプロットコマンド	127
	データを重ね書きに追加コマンド	128
	パラレルプロットコマンド	129
	データをパラレルに追加コマンド	130
	ズームコマンド	131
	マニュアル結果コマンド	132
	ピーク定義コマンド	133
	X-Y プロットコマンド	134
	ピークパラメータプロットコマンド	136
	半対数プロットコマンド	139
	スペシャルプロットコマンド	140
	グラフオプションコマンド	142
	色、説明コマンド	144
	フォントコマンド	146
	クリップボートへコピーコマンド	147
7章.	データ処理メニュー	
	スムージングコマンド	148
	微分コマンド	150
	積分コマンド	151
	半積分、半微分コマンド	152
	書き込みコマンド	153
	ベースラインフィッティング、減算コマンド	154
	ベースライン補正コマンド	156
	データポイント除去コマンド	157
	データポイント修正コマンド	158
	バックグラウンド減算コマンド	159
	シグナル平均化コマンド	160
	数学操作コマンド	161
	フーリェスペクトルコマンド	162
8章.	分析メニュー	
	キャリブレーション曲線コマンド	163
	スタンダード添加コマンド	165


	アータファイルレホートコマンド	167
	時間依存コマンド	170
	スペシャルプロットコマンド	173
9 音	シミュレーションメニュー	
·	メカニズムコマンド	175
	ポテンシャル、速度定数ダイアログボックス	173
	濃度、拡散係数ダイアログボックス	179
	表面濃度ダイアログボックス	
		179
	平衡時の濃度ダイアログボックス	180
	シミュレーション変数ダイアログボックス	180
	シミュレーションコマンド	181
	A.C. インピーダンスのシミュレーション (600E, 700E シリーズ)	182
10 辛	. ビューメニュー	
IU 부		106
	データ情報コマンド	186
	データ一覧コマンド	187
	理論式コマンド	188
	クロックコマンド	189
	ツールバーコマンド	190
	ステータスバーコマンド	190
44 立	\wedge II \neg ° \downarrow \neg	
11 早	. ヘルプメニュー	
	ヘルプトピックスコマンド	191
付録		
1.7 亚小	電気化学テクニックの略称	192
	モデル 400C シリーズ電気化学水晶振動子マイクロバランス	194
	モデル 600E シリーズのテクニック電気化学アナライザー	196
	モデル 700E シリーズバイポテンショスタットのテクニック	197
	モデル 800C シリーズ電気化学ディテクターのテクニック	198
	モデル 920D 走査型電気化学顕微鏡	199
	モデル 1000C シリーズマルチポテンショスタット	200
	モデル 1000C シリーズマルケホテンショスタット モデル 1100C シリーズパワーポテンショスタット / ガルバノスタット	
		201
	モデル 1200B シリーズハンドヘルドポテンショスタット	202
	モデル 200(B) ピコアンペアブースターとファラデーケージ	203
	モデル 684 マルチプレクサ	203
	モデル 680 アンペアブースター	204
	モデル 682 液 / 液界面アタプター	204
	CV 電極 & アクセサリー	205
	ケーブルと接続	206

ソフトウェアーの更新について	208
トラブルシューティング	209
メンテナンスとサービス	210
保証について	211
ソフトウェアーの保証について	212

紹介

1100C シリーズは汎用性に優れた電気化学計測装置です。本装置には高速デジタルファンクションジェネレーター、高速データサンプリングシステム、ポテンシャル、電流信号用のフィルター、第二ゲインステージ、iR 補償回路、ポテンショスタット、ガルバノスタット (1140C) を内蔵しています。ポテンシャル制御範囲は \pm 10V、電流範囲は \pm 2A、出力電圧範囲は \pm 25Vです。また、電流感度は単体でピコアンペアまで対応していますので、アダプターなしでも 10 μ m微少電極を用いた電気化学計測を行うことができます。モデル 200 ピコアンペアブースターとセルスタンドと一緒に用いますと、10pA 以下の電流を計測できます。ほとんどの実験のタイムスケール、つまり高速スキャンから低速スキャンまでの電気化学計測に対応します。例えば、サイクリックボルタンメトリー (CV) のスキャン速度は 0.1mV 分解能で 1,000V/s にできます。また、分解能 1mV の場合、5,000V/s までのスキャンが可能です。

モデル 1100C シリーズは温度、時間によるハードウェアードリフトを補償するためにポテンシャル、電流の再ゼロ調整を自動的に行います。機器の定期的なキャリブレーションは不要です。

モデル 1100C シリーズはウインドウズ環境下で PC により制御できます。操作性に優れ、ユーザーインタフェースはウインドウズデザインに準拠しています。ウインドウズアプリケーションを使用しているならば、マニュアル、ヘルプが無くとも機器を操作できるでしょう。コマンド、パラメーター、オプションは化学者馴染みの深い専門用語を用いました。ツールバーは通常使用するコマンドに簡単にアクセスできます。ヘルプシステムはオンラインヘルプ機能にしました。

装置は、多くのパワフルな機能を、例えばファイルの取扱い、実験コントロール、柔軟なグラフィック機能、各種データ解析、効率的なデジタルシミュレーション、その他ユニークな特徴としてはマクロコマンド、色指定、フォントの選択、データの書込み、見ながらのベースライン補正、信号の平均化、フーリェ変換、電気化学計測法に関係する式の表示などがあります。

雷気化学テクニック

スィープテクニック

- ●サイクリックボルタンメトリー
- ●リニアースィープボルタンメトリー
- ●ターフェルプロット
- ●ステップースィープ機能

ステップテクニック

- ●クロノアンペロメトリー
- ●クロリクーロメトリー
- ●階段状ボルタンメトリー
- ●タストポーラログラフィー
- ●微分パルスボルタンメトリー/ポーラログラフィー
- ●ノーマルパルスボルタンメトリー/ポーラログラフィー
- ●微分ノーマルパルスボルタンメトリー/ポーラログラフィー
- ●矩形波ボルタンメトリー
- ●マルチポテンシャルステップ

交流テクニック

- ●交流ボルタンメトリー/ポーラログラフィー
- ●位相選択交流ボルタンメトリー/ポーラログラフィー
- ●第二高調波交流ボルタンメトリー/ポーラログラフィー

ストリッピングテクニック

- ●リニアースィープストリッピングボルタンメトリー
- ●微分パルスストリッピングボルタンメトリー
- ●ノーマルパルスストリッピングボルタンメトリー
- ●矩形波ストリッピングボルタンメトリー
- ●交流ストリッピングボルタンメトリー
- ●位相選択交流ストリッピングボルタンメトリー
- ●第二高調波交流ストリッピングボルタンメトリー

電流制御テクニック

- ●クロノポテンショメトリー
- ●クロノポテンショメトリー電流ランプ
- ●マルチ電流ステップ
- ●ポテンショメトリックストリッピング分析

アンペロメトリー検出テクニック

- i-t 曲線 (アンペロメトリー)
- ●微分パルスアンペロメトリー

- ●ダブル微分パルスアンペロメトリー
- ●トリプルパルスアンペロメトリー
- ●バルク電気分解 クーロメトリー
- ●オープンサーキットポテンシャル タイム

ソフトウェアーの特長

ユーザーインターフェース

- 32-bit ウインドウズアプリケーション
- ツールバー:頻繁に使用するコマンドに簡単にアクセスできる
- ステータスバー: テクニック、ファイル状況、コマンドプロンプット
- プルダウンメニュー
- ダイアログボックス
- フルマウスサポート
- WYSIWYG グラフィックス
- ヘルプ機能の充実

ファイルマネージメント

- ●データファイルを開く
- ●データファイルの保存
- ●ファイルの削除
- ●データファイルの一覧
- テキストファイルの変換: データを他のソフトウェアー、例えば、スプレッドシートにエキスポート
- テキストファイルフォーマット
- ●現在のデータの印刷
- 多数のファイルの印刷
- プリントセットアップ

セットアップ

- テクニック:電気化学テクニックのフルレパートリー
- 実験パラメータ:非常に広いダイナミックレンジ
- システムセットアップ:通信ポート、電位極性と、電流軸
- ハードウェアーテスト:デジタル、アナログ回路診断テスト

機器の制御

- 測定: ほとんどの場合、リアルタイムデータ表示
- 繰り返し測定:自動データ保存、信号の平均化、遅延またはプロンプット
- 測定の停止
- 測定中のスキャン方向の反転:サイクリックボルタンメトリー
- 測定状況: 攪拌、パージ、iR 補償、測定後スムージング、RDE、SMDE 制御状況
- マクロコマンド:編集、保存、読込み、一連のコマンドの実行
- オープンサーキットポテンシャル測定
- iR 補償:自動、マニュアル補償、溶液抵抗、二重層キャパシタンス、安定化テスト
- アナログフィルター設定:ポテンシャル、i/V コンバーター、シグナフィルターの自動またはマニュアル設定

- セル制御:パージ、攪拌、セルオン、SMDE 滴下採取、前滴下ノック安定化コンデンサー
- ステップファンクション:電極洗浄または他の目的のためのステップファンクションジェネレーターの多数サイクル
- 測定前の作用電極のコンディショニング
- ストリッピングモード:使用可能/使用不可、析出電位、時間、攪拌、パージ条件

グラフィック表示

- 現在のデータプロット: ヘッダー、ファイル名、パラメータ、結果を伴うデータプロット
- 再スケール、ラベル:X.Y 軸表示、再スケール、テキストの挿入
- 上書プロット: 比較のために何種類かのデータセットを上書
- パラレルプロット:何種類かのデータセットを並べてプロット
- ズーム:選択したズームエリアを視覚化
- マニュアルによる結果:選択したベースラインを視覚化
- ピーク定義:形、幅、レポートオプション
- X-Y プロット: データポイント用として
- ピークパラメータプロット: $i_p \sim v$ 、 $i_p \sim v^{1/2}$ 、 $E_p \sim \log(v)$ プロット
- 半対数プロット:電流―電位半対数プロット
- グラフオプション:ビデオまたはプリンターオプション、軸、パラメータ、ベースライン、 結果、グリッド、軸反転、軸固定、軸タイトル、データセット、XY スケール、参照電極、ヘッ ダー、注
- 色、説明:バックグラウンド、軸、グリッド、曲線、説明サイズ、厚さ、表示間隔
- フォント:フォント、スタイル、サイズ、軸ラベルの色、軸タイトル、ヘッダー、パラメータ、 結果
- クリップボードへコピー:データプロットをワープロにペースト

データ処理

- スムージング:5~49ポイント最小二乗法、フーリェ変換
- 微分:1~5次、5~49ポイント最小二乗法
- 積分
- 畳み込み:半微分、半積分
- 書込み: 2×~ 64× データ書込み
- ベースラインフィッティングと減算:フィッティング機能の選択、多項式、ベストフィッティングの電圧範囲、ベ巣ライン減算:微量分析に有効
- ベースライン補正:選択したベースライン、勾配、dc レベル補償
- データポイント除去
- データポイント変更:データポイント変更の視覚化
- バックグラウンド減算:2組のデータセットの差分
- 信号の平均化:多数のデータ組の平均化
- 数学操作: 両 X、Y データ配列
- フーリエスペクトル

解析

- キャリブレーション曲線:未知濃度、傾き、切片、曲線の相関性の計算、キャリブレーション曲線のプロット、キャリブレーションデータの保存と読込み
- スタンダード添加: 未知濃度、傾き、スタンダード添加曲線の相関性の計算、スタンダード添加曲線のプロット、スタンダード添加データの保存と読込み
- データファイルレポート:指定ピークポテンシャル範囲での保存データファイルから未知 濃度を計算、種、キャリブレーション情報、テキスト形式での分析レポートを作成、最大 4 種類の目的物質の定義が行える
- 時間依存: 指定ピークポテンシャル範囲での保存データファイルから時間関数として未知 濃度を計算、キャリブレーション情報、時間関数としての濃度 レポートを作成またはプロット

デジタルシミュレーション

- 反応メカニズム: 既知定義メカニズム: 10(1120B 以下のモデル)、電子移動、一次、二次化学反応を含む組み合せ(モデル1130B/1140B)
- 系:拡散、吸着
- 最大式:12
- 最大種:9
- シミュレーションパラメータ:標準酸化還元電位、電子移動速度、移動係数、濃度、拡散係数、フォワード、可逆反応速度定数、温度、電極面積、実験パラメータ
- シミュレーションパラメータ保存
- シミュレーションパラメータ読込み
- リアルタイムデータ表示
- 濃度プロフィールのリアルタイム表示
- ●無次元電流
- ●平衡データ
- ●自動検索、過定量平衡定数の調査

ビュー

- データ情報:日付、時間、ファイル名、データソース、機器名、行ったデータ処理、ヘッダー、 注
- データ一覧:データ情報、数値データ配列
- 理論式:一般式、電気化学テクニックに関連した理論式
- クロック
- ツールバー
- ステータスバー

ヘルプ

- 状況ヘルプ
- 索引
- ヘルプの使用法
- アプリケーションについて

必要なシステム構成

オペレーティングシステム:マイクロソフトウインドーズ XP/7

プロセッサー: ペンティアム以上

RAM: 4G MB バイト

 モニター:
 VGA

 マウス
 PS/2

シリアル通信ポート: USB ポートまたは RS-232

出力デバイス: ウインドウズにてサポートされるプリンター

ハードウェアー仕様

ポテンショスタット

ガルバノスタット (Model 1140Cのみ)

ポテンシャル: ± 10 V 電流: ± 2A 最大電圧: ± 25V ポテンショスタット立ち上り時間 <2 μ s

4電極組合せ

参照電極の入力インピーダンス: $10^{12}~\Omega$ スィープテクニックでの最小電位増加分: $100~\mu$ V ポテンシャル 速度: 10~MHz

最大サンプリング速度: 1MHz (16-bit)

電流最大範囲: $1 \times 10^{-12} \sim 0.2 \text{ A/V}$ 範囲の $12 \, \text{レンジ}$

最低電流測定: 100 pA 以下

自動再ゼロ: ドリフトに対して両電位、電流

セルコントロール: パージ、攪拌、ノック

電位スキャン速度: 5,000 V/s

大きさ: 32(幅)×25(奥行)×12(高さ)cm

重さ: 約 6.7 Kg

組込み

ソフトウェアー:

機器はウインドウズ環境下で起動する DOS/V パソコンで制御できます。ハードウェアーはペテンティアム以上の CPU プロセッサーが要求され、キーボード, 2GMB RAM, ハードディスクドライブ、VGA モニター、マウス、シリアルポート、USB ポート、パラレルポート、ウインドヴスでサポートしているプリンターまたはプロッターが必要です。

ウインドウズの取扱いについてはウインドウズのユーザーマニュアルを参照して下さい。

機器のソフトウェアーをインストールする場合、添付のフロッピーディスクを"xxxxxx.EXEファイルをダブルクリックします。

- 1.ALSxxx フォルダーが自動的に作製されます。
- 2. マイコンピューターの C ドライブを開きます。
- 3. ディレクトリーを見付け、ALSxxx.exe ファイルを見付けて下さい。ところで、xxx はモーデル番号です。
- 4. マウスの左ボタンでそのファイルクリックし、マウスの左ボタンを押しながら、グループ画面からモニターにアイコンを移動しますと、ショートカットアイコンが表れます。
- 5. ショートカットキーをダブルクリックしますと、プログラムが開始されます。

ハードウェアー:

システムのハードウェアーの組込みは簡単、容易です。機器が入っているダンボール箱から機器を取出し、使用する電源を確認します。交流電源が工場で前以て設定され、裏面のシリアル番号に表示されています。交流電源が正しい場合、機器の電源ソケットに電源ケーブルを接続します。

パソコンの通信ポート (Com Port1) または USB ポートと機器の通信ポートを 25 ピンの 通信ケーブルまたは USB ケーブルで接続します。ソフトウェアーで最適なポート設定を行う 必要があるかもしれません。セットアップメニューのシステムコマンドにて行えます。通信速度の心配も不要です。

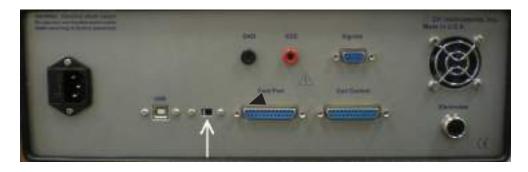


図 2.1USB ポートのジャンパーの選択 100 ピンのプロセッサーチップの側に 6 ピンのコネクターかあります。これを USB 側にしますと、USB ポートが利用できます。

シリアルポートが利用できるコンピュータを用意します。通常シリアルポートは2つ用意されています。1つはマウスに使用し、もう1つのポート(COM2)はフリーになっています。COM2が他のデバイスドライバー、ファックスモデム等で使用されている場合、COM2はフリーではありません。そのような場合、PS2マウス対応のコンピュータをご使用下さい。PS2マウスは通信ポートを使用しませんので、COM1がフリーで、ファックス/モデムカードをインストールすることが出来ます。PS2マウスは今、良く使用されています。他の選択としてはバスマウスを購入する方法です。この方法もCOM1をフリーにします。

通信に USB ポートを使用する場合、背面のスイッチの位置を変更し、ソフトをインストールして下さい。1100C シリーズは出荷前に厳密な試験を行っており、PC と接続して Linked Failed エラーが発生する場合、コンピューターのシリアルポートに起因したトラブルであることがあります。考えられる理由としてはウインドウズのシリアルポートのインターラプトの優先順位は低いため、他のデバイスによる影響で通信ができないことが起こります。そのような場合、スクリーンセーバーを OFF、インターネット接続を OFF、ウイルススキャンソフトを OFF にして下さい。

ネットワークカードを使用しないで下さい。ネットワークはバックグラウンドインタラプトを発生し、測定器とパソコンの間のデータ通信を影響します。

裏パネルに電極ケーブルを接続します。白は参照電極、赤はカウンター電極、作用電極は緑です。

裏パネルのセルコントロールはパージ、攪拌、水銀滴下のコントロールに使用します。モデル 684 マルチプレクサー等を接続します。詳細については付録を参照して下さい。

回転ディスク電極装置をお持ちの場合、モデル 1100C シリーズ (1130C/1140C) からの RDE 制御は可能です。裏面パネルにある 2 つのバナナジャックの電圧は $0 \sim 10$ V となり、 $0 \sim 10,000$ rpm 回転速度に相当します。

これで機器の用意が完了しました。

役に立つヒント

ウインドーズアプリケーションをよく使用する方には簡単にこの装置を操作することが出来 ます。次のポイントはウインドーズ経験の少ない方のためのポイントですが、いくつかは装置 を使用上の便利なポイントになるでしょう。

- 1. ツールバー(メインメニューバーの下にあるボタンがたくさん付いているバー)の操作に慣れます。ツールバーはよく使用するコマンドに素早いアクセスを行えます。コマンドボタンの意味はボタンを押すとスクリーンの左下にコメントが表示されます。
- 2. 多数のファイルをプリント、多重、パラレルプロットするために多数のファイル名を同時に 選択します。選択したい最初のファイル名をクリックして、マウスの左ボタンを押しながら 下にドラッグします。多数のファイルが選択されます。ファイルがディレクトリ中にまとま らない場合、Ctrl キーを押しながら各ファイルをクリックして選択できます。
- 3.Y 軸のタイトルの方向が違う場合、グラフィックメニューのフォントコマンドを使用して、 プリントするための Y 軸の回転角度を変更できます。
- 4. アイテムをダブルクリックすることによってファイルやテクニックを選択できます。
- 5. タブキーを使用すると各アイテムに移動して、パラメータを変更することが出来ます。編集 ボックス中のテキストがハイライトされます。直接新しいテキストを入力できます。時々、 マウスのクリック&ドラッグを使用するよりも早くて便利です。
- 6. 装置の内部的ノイズはとても小さいです。最も一般的で最も大きなノイズ源はライン周波数 (60Hz か 50Hz) です。ノイズを削減するためにアナログローパスフィルターがあります。スキャン速度 0.1V/s の時、自動カットオフ設定は 150Hz か 320Hz です。ライン周波数がパスして、ノイズが現れます。スキャン速度 0.05V/s の時、フィルターのカットオフ周波数は 15 か 32Hz で、ライン周波数のノイズが効果的に削減されます。サンプル間隔が電源ライン周期の倍数に設定する場合、ライン周波数ノイズは削減できます。小さい信号と比較的早い測定にはファラデーケージをお薦めします。
- 7. データを異なる形式に表示する場合、グラフィックスメニューのグラフオプションコマンドを使用します。使用可能なデータ表示形式は本マニュアルの6-1ページを参照して下さい。

USB ドライバーのインストール

1. はじめに

ALS/CHI 1100C シリーズにおいて USB の接続が可能となりましたが、接続時のドライバーの設定が必要になります。ドライバーのインストールは、新規に使用する時だけではなく、USB のそれぞれのポート毎に必要になります。BAS で設定及びテストは1つのポートについて行いますので、お客様がBAS でテストしたポート以外での使用した時には、必ずドライバーのインストールを行う必要があります。

2. インストール手順

BAS でインストールした場合このドライバのコピー手順は必要ありません。 始めに、パソコンの C ドライブに新規フォルダーを作成します。このフォルダーにドライバーのディスク又は CD からファイルをコピーしておきます。 BAS でインストールした時はフォルダー名は "C:\USB-DRV" としています。

以降の説明で C:\USB-DRV となっている所は実際にドライバーがコピーされている場所を示すこととします。

1. モデル 1100C の電源を切り、ALS マシンとコンピュータを USB ケーブルで接続します。接続した後、モデル 1100C の電源を入れます。

1. 付属している CD を立ち上げ [cp2101] をダブルク リックします。(図1参照) 2. $\lceil cp2101 \rfloor$ フォルダーの中の $\lceil Setup.exe \rfloor$ をダブルクリックします。(図2参照)

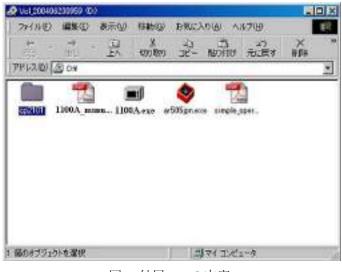


図 1. 付属 CD の内容

図 2.cp2101 フォルダーの内容

3. [Install] をクリックして、インストールを開始します。

図 3.Install の方法

4. 器械本体 (ALS/CHi) と PC を USB ケーブルで繋ぎ、器械本体 (ALS/CHi) の電源を ON にする。「マイコピュータ」のプロパティをクリックして、デバイスマネージャーを開き、「CP2101 USB to UART Bridge Controller(COM #)」のプロパティを開きます。% COM # の# は専用ソフトと同じポート設定にして下さい。

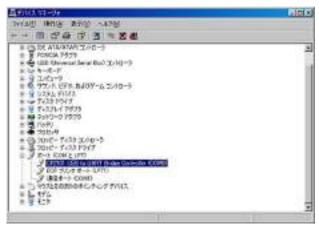


図 4. デバイスマネジャーによる確認

5. ビット / 秒「19200」、データビット「8」、パリティ「なし」、ストップビット「1」、フロー制御「なし」と入力します。 (図5参照)次に詳細設定 (A)をクリックします。

図 5. 通信の設定

6. ウンドウズ XP では COM ポートを選べますので、専用ソフトと同じポートに設定下さい。(図 6 参照) Windows 98 では選べませんので、図 4 でポートを確認し、専用ソフトのポート設定をして下さい。

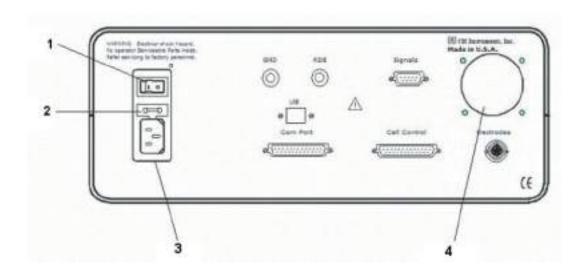
図 6. 通信ポートの設定

モデル 600B の制御用ソフトを起動して COM ポートを手順 G で確認したものに 変更して、保存し、制御ソフトを再起動すると使用できるようになります。

安全な本体のセットアップ

- 1. 本マニュアルに記載した電気化学測定器は専門知識を有する研究者が使用するために設計されています。調整、メンテナンス、修理は本マニュアルを熟読の上行なって下さい。精密な器機ですので、取扱いには十分お気を付けて下さい。修理等のサービスが必要な場合、ビーエーエスにご連絡下さい。
- 2. 高感度測定を必要とする場合、器機を設置する場所、電源環境等を考慮の上最適な場所に 設置してください。化学物質などの影響がなく、水平バランスが取れている実験テーブル をご利用ください。腐食物質、腐食性ガス雰囲気下のような場所は避けて下さい。
- 3. 本計測器の上に測定用セル等を置いて実験しますと、サンプルの飛散等の危険がありますので、このような測定は避けて下さい。また、器械内部にサンプルが侵入した場合、最寄の代理店にご相談下さい。本体の定期的な清掃は必要ありませんが、本体に水分などが付着した場合など乾燥タオルで拭取ってください。使用しますコンピューターなどの傍には薬品などを行ないよう気を付けて下さい。
- 4. セルケーブルの腐食が起こらないよう気を付けて下さい。チェック方法としては IM Ω 抵抗を用いて、 \pm IV 範囲、感度を 1×10 -6 とし、最大電流 \pm 1 μ A の直線が得られます。作用電極は抵抗の片端に接続し、カウンター、参照極は抵抗の残り端に接続します。接続は間違えないよう気を付けて下さい。
- 5. 実際の電気化学計測を行った時、期待したデータがでない原因は誤ったセルケーブルの接続、参照電極の劣化、作用電極の汚れ等の要因であることが頻繁に見られます。スタンダードサンプルを用いて電気化学データを取ることにより、正しい測定を行って下さい。
- 6. 装置のカバー頻繁に取り外さないで下さい。
- 7. 使用する試薬に関する MSDS シートを収集し、安全な取扱い方法をマニュアル化することをお勧めします。
- 8. トラブルが発生した場合、ビーエーエスにお問合せ下さい。装置のハードウェアーテストでエラーが頻繁に発生した場合、どのようなエラーが表示されているかをメモにして下さい。その内容をお知らせ下さい。
- 9. PC に接続する装置の周りにはスペースを空けてください。ファンの空気循環ならびに電 極等の取扱いに差し支えない空間を確保して下さい。
- 10. 電極の接続には付属のセルケーブルを使用して下さい。ワニロクリップの腐食には気を付けて下さい。接触不良の原因となります。

電源投入


送付されてきましたダンボールを開封しますと、

- 1. 電源ケーブル
- 2. セルケーブル
- 3. マニュアル
- 4. 電気化学アナライザー本体
- 5. 注文してある場合、電極関係のセル

本体は交流 $100V \sim 230V/50 \sim 60$ Hz で使用できるよう設計されています。本体の背面をチェックして頂きますと、電源ケーブルを挿入するソケッがあります。出荷前に使用する電源は調整してあります。

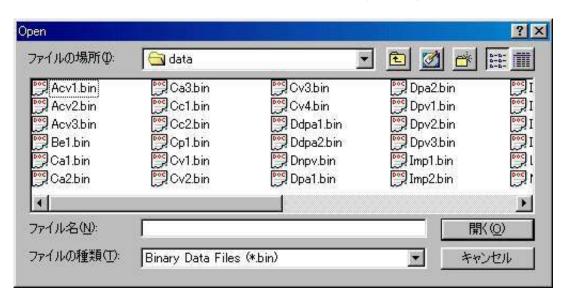
電源ケーブルは通常壁にあります電源コンセントに接続します。この時、電源のグラウンドが取れていることを確認してください。グラウンドが取れていませんと、ノイズの原因となります。ヒューズは本体の電源ソケットの中に組み込まれています。ヒューズの規格は110V,0.8Aです。

電気化学アナイラザーの電源をオンにしますと、前面のインジケーターが点燈します。

本体の背面の説明

- 1. パワースイッチ 本体のオン / オフスイッチ
- 2. ヒューズ 110V. 0.8A
- 3. 電源ソケット IEC タイプ
- 4. 冷却ファン

ファイルを開く


次のオプションは選択するファイルを指定します。:

一回で一つのデータのみを読み込みできます。これはアクティブデータです。ファイルが読み込まれた後、メモリーは最新のデータと交換されます。そして、グラフィックスは更新されます。テクニックと実験パラメータもまた更新されます。

このソフトはマルチドキュメントインターフェースを使用するため、この手順を繰り返すこと によって多数のファイルを開くことが出来ます。

下記の図はファイルを開くコマンドダイアログボックスです。

次のオプションにてファイルを選択します。:

ファイル名

ファイル名を入力または選択する。このボックスはタイプボックスのリストファイルで選択できる拡張子を持つファイルを一覧します。

拡張子を入力する必要はありません。システムは自動的にファイルに拡張子を付けます。

ファイルタイプの一覧

ファイルタイプの選択。"bin"(バイナリファイルデータ)のみが利用でます。

ドライブ

システムが保存するファイルのドライブの選択。

ディレクトリー

システムが保存するファイルのディレクトリーの選択。

このコマンドはツールバーボタンがあります。

名前を付けて保存コマンド

ファイルに名前を付けて保存するコマンドです。

下図は名前を付けて保存するダイアログボックスです。:

次のオプションは保存するファイルの位置、名前を指定します。:

ファイル名

現在のデータ、変数を保存するために新しいファイル名をタイプします。ファイル名は8文字まで入力できます。存在されたファイル名を使用した場合、システムは警告を発生し、次に進みます。

拡張子をタイプする必要はありません。システムは自動的に拡張子をファイルに付けます。 データファイルの場合、拡張子 "bin"(バイナリーファイル)です。 マクロファイルの場合、 拡張子 "mcr"です。シミュレーションファイルの場合、拡張子 "sim"です。他の拡張子は許可されていません。

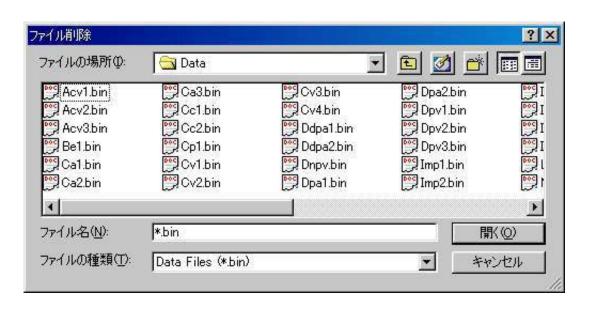
タイプファイルの一覧

開きたいファイルのタイプを選択します。"bin"(バイナリファイルデータ)のみが利用でます。 ドライブ

システムが保存するファイルのドライブの選択。

ディレクトリー

システムが保存するファイルのディレクトリーの選択。


このコマンドはツールバーボタンがあります。

削除コマンド

このコマンドを使用すると、ファイルを削除します。

下図はファイル削除ダイアログボックスです。:

次のオプションは削除したいファイルの位置、名前を特定します。:

ファイル名

削除したいファイル名を選択またはタイプします。このボックスはタイプボックスのリストファイルにて選択する拡張子を持つファイルを一覧します。多数のファイルを削除するために、Ctrl ボタンを押しながら、選択されたいファイル名にマウスを移動し、Ctrl キーを押しながら、左マウスボタンをクリックします。

システムは特定された拡張子を削除タイプボックスに追加します。

タイプのファイル一覧

削除したいファイルのタイプの選択。

ドライブ

削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

修復コマンド

このコマンドを使用しますと、測定中のハードディスクに保存してあるデータを元に戻します。実験が外部干渉または中断、通信エラーにより終了しない場合、部分的なデータは回復できます。これはスキャン速度が遅い実験の場合、有効です。何時間も掛かる測定データを修復できます。

このコマンドはデフォルトでは有効ではありません。遅いスキャン走査実験を行わない場

合、または事故により実験が中断した場合、再測定して下さい。このコマンドを有効にする場合、セットアップメニュー下のシステム コマンドを使用して下さい。"測定中のデータ修復保存"オプションをチェックして下さい。

最後の測定データを修復したい場合、 測定開始前に行って下さい。新規測定が 行われますと、最後の測定データは失わ れます。

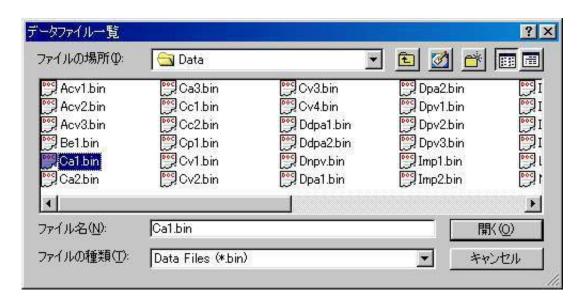
プログラムの更新コマンド

このコマンドを使用すると、機器内部のソフトウェアーをアップデートできます。このコマンドを使用する場合、ユーザーマニュアルの付録のソフトウェアー更新の取り扱いを必ず参照して下さい。

フラッシュメモリーを更新する場合、ヘキサデシマルファイル (Als/CHIxxxx.HEX, ここでは xxxx はモデル番号です) が必要です。次の操作を行なって下さい。:

- 1. PC サイドの Als/CHIxxxx プログラムを終了します。
- 2. 機器の電源を切ります。
- 3. 側面のネジを外し、上部カーバーを取り外します。
- 4.9 ピンシリアル通信コネクターの近傍のバックスライドスイッチがあります。スイッチ 位置を "Download" に変更して下さい。.
- 5. 機器の電源を入れます。
- 6. PC サイドの Als/CHIxxxx プログラムを立ち上げます。
- 7. ファイルメニュー下の "プログラム更新 " を使用してフラッシュメモリー更新ダイアログボックスを行います。
- 8. ダイアログボックスで, use "Browse" ボタンを使用してヘキサデシマルファイル名を選択します。次に、"Update" ボタンをクリックしフラッシュメモリーにプログラムをダウンロードします。

ダウンロードを失敗した場合、エラーメッセージが現れます。ステップ1からやり直して下さい。


9. ダウンロードか成功した場合、確認メッセージが現れます。機器の電源を切り、バックスライドスイッチを元の位置に戻します。機器のカバーを元に戻しネジを止めます。これで機器のアップクレードは終了です。

データファイル一覧コマンド

このコマンドを使用すると、テキストモードでデータファイルを一覧できます。テキストフォーマットはテキストファイルフォーマットで変更できます。

現在のデータは変更されずに残っています。現在のデータの数値一覧する場合、ビューメニューのデータ一覧コマンドを実行します。

下図はデータファイル一覧のダイアログボックスです。:

次のオプションはテキストモードで一覧したいファイルの位置と名前を指定します。:

ファイル名

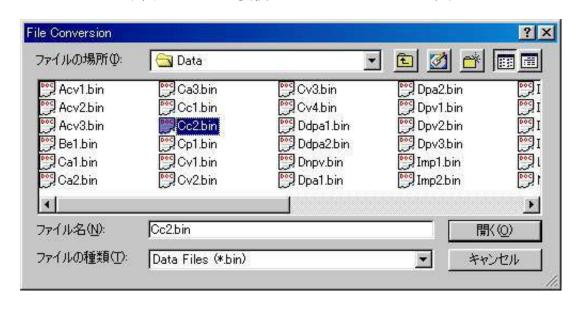
一覧したいファイル名を選択またはタイプします。タイプボックスのリストファイルにて選択する拡張子を有するファイルを一覧します。

拡張子をタイプする必要はありません。システムは自動的にファイル名に "bin" を付加えます。他の拡張子は許可されません。

タイプのファイル一覧

一覧したいファイルタイプを選択します。"bin"(バイナリファイルデータ)のみが利用でます。 ドライブ

削除したいファイルのドライブの選択。


ディレクトリー

削除したいファイルのディレクトリーの選択。

テキスト変換コマンド

このコマンドを使用しますと、バイナリーデータファイルをテキストファイルに変換します。 テキストフォーマットはテキストファイルフォーマットにより変更できます。

多数のファイルも変換用に選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルを移動し、Ctrl キーを押しながら、左マウスボタンをクリックします。テキストファイルは他のソフト、例えばエクセル等のスプレッドシートで読み込みできます。下図はファイル変換ダイアログボックスです。:

次のオプションはテキストファイルに変換したいバイナリーファイルの位置と名前を指定します。:

ファイル名

一覧したいファイル名を選択またはタイプします。タイプボックスのリストファイルにて選択する拡張子を有するファイルを一覧します。

変換のために多数のファイルを選択することが出来ます。

拡張子をタイプする必要はありません。システムは自動的にファイル名に "bin" を付加えます。他の拡張子は許可されません。

タイプのファイル一覧

変換したいファイルタイプを選択します。 "bin"(バイナリファイルデータ)のみが利用できます

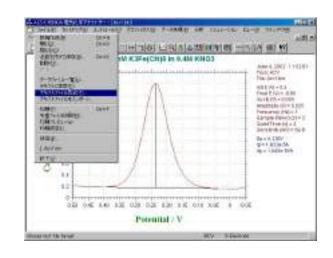
ドライブ

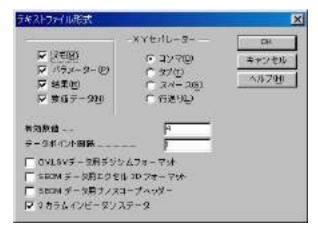
削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

テキスト変換方法について

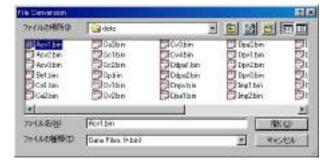

データを表示した後、図形データを数値データに変換する方法について紹介いたします。 測定したデータから必要な数値データを求める場合、ファイルの中のテキストファイル形式を選択してください。

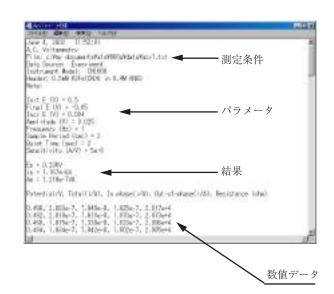

テキストファイル形式を選択しますと、右のダイアログが表れます。この時を表示した後、図形データを数値データに変換する方法について紹介いたします。測定したデータから必要な数値データを求める場合、ファイルの中のテキストファイル形式を選択してください。

表示させるのに必要な項目メモ、パラメータ、結果、数値データをマウスにて選択します。エクセルにデータをエクスポートする場合、データフォマットを設定する必要があります。例えば、コンマ、タブ等です。コンマを選択した後、有効数値(桁数)、データポイント間隔(電位の解像度)を指定します。次に、インピーダンスの場合、3カラムインピーダンスデータを選択します。

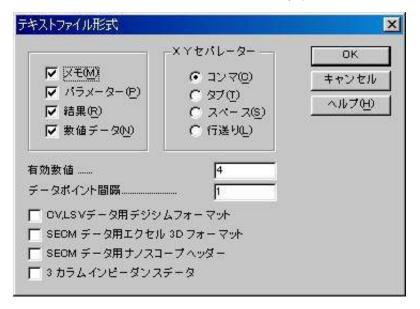
表示させる必要があるデータ形式の選択を 行います。グラフォプションを選択します。

グラフオプションを選択してから、右画面が表示されます。データ(a)のダイアログボックスで Capacitance の選択をマウスで行ないます。




この画面を開いてテキストに変換 (c) をマウスで選択してください。

データが保存されているディレクトリーが表示されます。変換したいデータをマウスにて選択しますと、自動的にテキスト形式に変換されます。変換されたデータはデータが保存されている同じディレクトリーに保存されます。



テキストデータの内容をチェックしたい場合、 ウインドウズのメモ帳で読み込んで表示させ ました。日時、測定条件、パラメータ、結果、 測定データが転送されます。不要な項目はテ キストファイル形式のダイアログボックスで 必要な項目のみ選択して下さい。

テキストファイルフォーマットコマンド

このコマンドを使用すると、テキストモードでデータフォーマットを選択できます。下図はテキストファイルフォーマットダイアログボックスです。:

次のオプションはテキストフアイルフォーマットを指定します:

メモ

一覧したい日付、時刻、テクニック、ラベル、注等があれば、このチェックボックスにチェックします。

パラメータ

一覧したい実験パラメータがあれば、このチェックボックスにチェックします。

結果

一覧したい実験結果、例えば、ピークまたは波形ポテンシャル、電流、面積があれば、この チェックボックスにチェックします。一覧したい項目を選択した後、グラフィックスメニー 下のピーク定義コマンドを実行します。

数値データ

一覧したい数値データポイントがあれば、このチェックボックスにチェックします。

セパレーター

X,Y データ組で使用される (コンマ、タブ、スペースまたはラインフィード) セパレーター を選択します。データ組は次のフォーマットの一つを有します。:

データフォーマットは市販のソフト、例えばスプレッドシート、データベースと互換です。

有効数値

このコマンドはテキストファイルの有効数字の数を設定する。有効数字のデフォルトは4桁です。ほとんどのアプリケーションに満たす条件です。最大10桁の有効数字に変更できます。しかしながら、有効数字の桁数が多くなると、データファイルも大きくなります。

データポイントインターバル

このコマンドで部分的にデータポイントを読み込み、表示することができる。データ分析やデータファイルサイズを縮小するのに役立つ。しかし、データの詳細を失う可能性がある。

CV と LSV データ用の DigiSim フォーマット

このコマンドは、CVとLSVデータのみに使用します。このボックスにチェックを入れると、テキストデータファイルは直接 DigiSim に読み取れるフォーマットになります。

エクセル3D形式

このコマンドは SECM イメージデータ用です。このボックスがチェックされますと、データファイルはエクセルの 3D 表面プロットに直接読み取れます。

エクセル 3D表面プロットを実行するために、次の操作を行って下さい。

- 1. エクセルをスタートする
- 2. テキストデータファイルを開く
- 3. "テキストインポートウイザード-ステップ 1/3" ダイアログボックスが表示されます。" Next" ボタンを押します。
- 4. "テキストインポートウイザード-ステップ 2/3" ダイアログボックスが表示されます。テキストファイルフォーマットに使用したデータセパレータにマッチするために、" Delimiters" を選択。
- 5. "テキストインポートウイザード-ステップ" 3/3 ダイアログボックスが表示されます。" Finish" ボタンを押します。データを収容するスプレッドシートが表示されます。
- 6. スプレッドシート中の全てのデータポイントを選択して下さい。
- 7. ツールバーに"ChartWizard"ボタンを見つけ、押して下さい。
- 8. スプレッドシートのデータエリアにマウスを移動し、左ボタンを押します。
- 9. "ChartWizard" ダイアログボックスステップ 1/5 が表示されます。"Next" ボタンを押します。
- 10. "ChartWizard" ダイアログボックスステップ 2/5 が表示されます。3D Surface を選択して、"Next" ボタンを押します。
- 11. "ChartWizard" ダイアログボックスステップ 3/5 が表示されます。"1" か"2" を選択して、Next" を押します。
- 12. "ChartWizard" ダイアログボックスステップ 4/5 が表示されます。"一連のデータ列"、"X 軸ラベルの第一列を使用する"、"Y 軸ラベルの第一カラムを使用する"を読込みます。"Next" ボタンをクリックします。
- 13." ChartWizard" ダイアログボックスステップ 4/5 が表示されます。前もって決めた説明、チャートタイトルを加え、X,Y,Z の軸タイトルを入力します。その後、" Finish" ボタンをクリックします。14. スプレッドシートのデータエリアに 3D surface plot が表れます。グラフのサイズを変更するにはカーソルの形がサイズ変更カーソルに変わるまでカーソルをグラフの角に移動します。マウスの左ボタンを押しドラッグします。グラフが大きくなったり、小さくなったりするのを見ることができます。
- 15. グラフを選択し(グラフをクリックする)、コピー(編集メニューのコピーコマンドを使用する、またはツールバーのコピーボタンをクリックする)することによって、グラフをワープの等にペーストでき、印刷できます。

データ密度が高く、データポイントの接続線がハッキリ見ることができない場合、データポイント間隔を1より大きくして下さい。

ナノスコープヘッダー

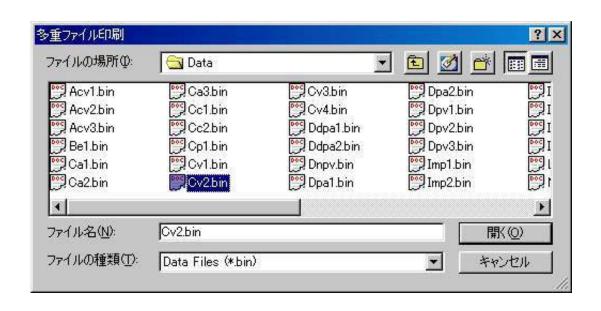
これは SECM イメージデータ用です。 このボックスがチェックされますと、ヘッダーがテキストファイルに加わり、データファイルは 3D プロット用ナノスコープソフトウェアにて直接読み込みできます。

テキストファイルインポートコマンド

このコマンドはテキストファイルをインポートします。ALS/CHI テキストファイルならび に Bioanalytical Systems 社のテキストファイルデータを読み込むことができます。下図はテキストファイルインポートダイアログボックスです。:

ALS/CHIファイルの場合、メモ、パラメーターかありませんと、ファイルの読み込みは行いません。Bioanalytical Systems 社のテキストファイルとはフォーマットが異なりますのでご注意下さい。

印刷コマンド


ドキュメントを印刷するためのコマンドです。印刷出力はスクリーンで見たのと同じです。 印刷出力をカスタマイズする場合、グラフメニューのグラフオプションを使用します。 紙の種類はランドスケープになります。警告が表れた場合、紙の種類を設定するためにプリントセットアップを使用します。この設定はプログラムを終了した時、記憶されません。紙の種類を永続的に設定する場合、メインウインドウのプリントマネージャーを用いて、プリンターセットアップコマンドを実行します。

このコマンドはツールバーボタンがあります。

多重ファイル印刷コマンド

ドキュメントを印刷するためのコマンドです。印刷出力はスクリーンで見たのと同じです。 印刷出力をカスタマイズする場合、グラフメニューのグラフオプションを使用します。 下図は多重ファイル印刷ダイアログボックスです。

次のオプションは印刷したいバイナリーデータファイルの位置と名前を指定します。:

ファイル名

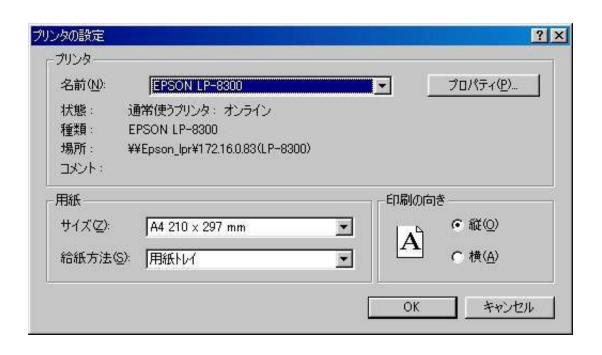
一覧したいファイル名を選択またはタイプする。タイプボックスのリストファイルにて選択する拡張子を有するファイルを一覧します。 多数のファイルを選択するためには、マウスカーソルを選択したいファイル名に移動し Ctrl キーを押しながらマウスの左ボタンを押します。

拡張子をタイプする必要はありません。システムは自動的にファイル名に "bin" を付加えます。他の拡張子は許可されません。

タイプのファイル一覧

印刷したいファイルタイプを選択します。 "bin"(バイナリファイルデータ) のみが利用できます

ドライブ


削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

印刷セットアップコマンド

このコマンドを使用すると、プリンターの接続を選択できます。下図は印刷セットアップダイアログボックスです。:

次のオプションはプリンターの選択と接続を指定します。

プリンター

使用したいプリンターの選択を行います。デフォルトプリンターを選択または特定プリンターオプションの選択、ボックスで示されるインストールされた最新のプリンターの一つを選択します。プリンターをインストールし、ウインドウズコントロールパネルを用いてポートの設定を行います。

オリエンテーション

ポートレイトまたはランドスケープを選択します。このアプリケーションのペーパオリエンテーションはランドスケープです。警告が表れた場合、用紙の種類を設定するための印刷セットアップコマンドを使用します。この設定はプログラムを終了した時メモリーされません。用紙の種類を永続的に設定する場合、プリンターを完全にランドスケープに設定する必要があります。メインウインドウのプリンターマネージャー起動し、プリンターセットアップコマンドを実行します。ワードのようなソフトはデフォルトセッティングを各ソフトにおいて保存されます。グローバルセッティングはそれらのソフトに影響しません。

用紙サイズ

印刷するドキュメントの用紙サイズの選択

用紙の供給

プリンターはサイズの異なる用紙を収納するマルチトレータイプがあります。ここでトレー の指定を行います。

オプション

プリンターの選択、印刷を指定するためのダイアログボックスを表示します。

終了コマンド

アプリケーションを終了するためのコマンドです。

終了する時、ファイルディレクトリー、システムセットアップ、コントロール状況、マクロコマンド、データ処理オプション、シミュレーションオプション、グラフィックオプション、色、フォント等、いくつかのシステム情報は保存されます。

ショートカット

マウス: アプリケーションコントロールメニューボタンをダブルクリックします。

キー: ALT+F4

テクニックコマンド

このコマンドを使用すると、電気化学テクニックを選択できます。 下図は電気化学テクニックのダイアログボックスです。:

次のオプションは電気化学テクニックの選択を指定します。:

テクニックの選択

使用したい電気化学テクニックを選択します。このボックスは装置で利用できるテクニックを一覧します。選択したいテクニックをダブルクリックすることはテクニックを選択し、OK ボタンをクリックすることと同じです。

ポーラログラフィックモード

このボックスをチェックするとポーラログラフーモードを使用でき、水銀滴を成長させ、データポイント毎に滴下させます。

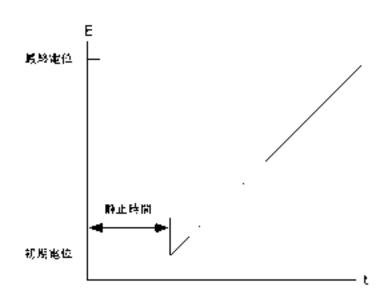
次のテクニックのみにポーラログラフーモードが許可されます:階段波 (SCP), 微分パルスポーラログラフィー (DPP), ノーマルパルスポーラログラフィー (NPP), 一旦ポーラログラフィーモードが使用されますと、ストリッピングモードは使用できません。コントロールメニューのストリッピングモードコマンドを使用してストリッピングモードに設定する場合、ポーラログラフィーモードを未チェックにする必要があります。

このコマンドはツールバーボタンがあります:

パラメータコマンド

このコマンドは実験パラメータをセットするために使用します。

システムはパラメータダイアログボックスを表示させ、使用するパラメータを選択します。テクニックによって、パラメータダイアログボックスは異なります。テクニックによるパラメータは次の通り:


サイクリックボルタンメトリーパラメータ リニアースィープボルタンメトリーパラメータ 階段波ボルタンメトリーパラメータ ターフェルプロットパラメータ クロノアンペロメトリーパラメータ クロノクーロメトリーパラメータ 微分パルスボルタンメトリーパラメータ ノーマルパルスボルタンメトリーパラメータ 微分ノーマルパルスボルタンメトリーパラメータ 矩形波ボルタンメトリーパラメータ 交流ボルタンメトリーパラメータ 第二高調波交流ボルタンメトリーパラメータ アンペロメトリー i-t 曲線パラメータ 微分パルスアンペロメトリーパラメータ ダブル微分パルスアンペロメトリーパラメータ トリプルパルスアンペロメトリーパラメータ バルク電気分解 - クーロメトリーパラメータ ハイドロダイナミック変調ボルタンメトリーパラメータ スィープーステップファンクションパラメータ マルチポテンシャルステップパラメータ クロノポテンショメトリーパラメータ クロノポテンショメトリー - 電流ランプパラメータ ポテンショメトリックストリッピング分析パラメータ オープンサーキットポテンシャル-タイムパラメータ

各テクニックのパラメータの詳細については、関連ダイアログボックスの項を参照して下さい。 このコマンドはツールバーボタンがあります:

スィープテクニック(LSV、CV、TAFEL)

リニアースィープテクニックでは、電位は一定のスキャン速度で初期電位から最終電位まで直線的に変化させます。電流は印加電位の関数としてモニターされます。簡単な LSV の電位波形を図 4-1 に示します。 図 .4-1.LSV のポテンシャルの波形

LSV を更に汎用的にしたものが CV です。 このテクニックでは、最終電位に達した時、スキャン方向を反転し、同じ電位範囲内で反対の方向に再びスキャンします。フォワードスキャンで生じた電気化学反応の生成物質を逆スキャンで調べることができます。この特徴が CV テクニックが広く使用される主な理由の 1 つです。

CVでは、電位は同じ範囲内で何回も繰り返すことができます。初期電位と、スキャンの方向が反転される高電位と低電位の2つのスイッチングポテンシャルという3つの電位変数が必要です。CVのポテンシャル波形を図.4-2に示します。

図 4-2 に CV の最もシンプルな I ー E 曲線を示します。 曲線の非対称性は拡散による物質移動により生じます。この曲線の形に影響を及ぼす多数の他の変数があります。例えば、遅い不均一系の電子移動、

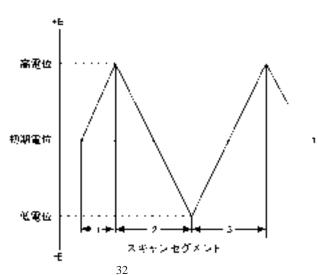


図 4-2.CV のポテンシャル波形

酸化或いは還元種の不安定性、吸着などです。もし不均一系の電子移動速度が速ければ(実験のタイムスケールと比べて)、そして酸化種還元種両方が安定(実験のタイムスケール上)であるなら、その時、レドックス過程は電気化学的に可逆的と言れます。そのような系の標準レドックスポテンシャルは2つのピークポテンシャル(E_{pa} と E_{po})の平均であり、ピークポテンシャルの差は57/n (mV) です(n は 1 モル当たりの移動電子数です)。

可逆過程のサイクリックボルタンメトリーではピーク電流は Randles-Sevcik 式で表わされます。

 $i_p = 2.69 \times 10^5 n^{3/2} AD^{1/2} Cv^{1/2}$

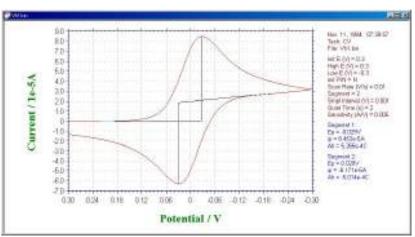
i_p= ピーク電流 (A)

n=equiv/モル

A= 電極面積 (cm²)

D= 拡散係数 (cm²/s)

C= 濃度 (mole/cm³)


v= スキャン速度 (V/s)

それゆえに、可逆過程の、 i_p は濃度 C とスキャン速度 $v^{1/2}$ に比例します。CV 曲線の形に影響を及ぼす多数の変数があります。遅い電子移動速度はピークポテンシャルの分離(ΔE_p)を増加させ、電子移動の速度定数はスキャン速度による ΔE_p の変化を調べることにより算出できます。作用電極と比較電極間の未補償抵抗もまた同じく ΔE_p を増加させます。 未補償抵抗の効果はエレクトロニクスによる iR 補償により低下させるか、或いは取り除くことができます。(コントロールメニューの iR 補償を参照)

もう1つの CV の用途として電極反応の生成種の反応を研究することがあります。フォワードスキャンで生じた生成種の反応性は折り返しのスキャンやそれ以後に引き続くスキャンにより調べられます。 反応速度の定性的評価はスキャン速度を変えて得られます。

簡便性と迅速性のおかげで CV は酸化還元系を調べる最初の手段としてしばしば使われ、反応速度とメカニズムの定性的な解析手段として非常に強力

図 4-3.CV の典型的な電流応答

なテクニックとされています。 しかし、遅い電子移動効果と化学反応性を切り離すべき方法がないので、CV と LSV は、一般に均一系と不均一系の反応速度の定量的な測定には不向きです。 これらの測定には、他のテクニック(例えば、クロノクーロメトリー)の方が一般により適しています。とはいえ、他のテクニックが使われる前に、酸化還元電位を知る必要があり、これは CV によって最も便利に調べることができます。

CV と LSV に現われるバックグラウンド(容量性)電流が定量分析手段としての有用性に制限を与えます。一方、LSV はストリッピングボルタンメトリーによる微量金属の検出に際しては有効な手法になります。

サイクリックボルタンメトリーのパラメータ

サイクリックボルタンメトリーの表示は以下の通り:

刃期電位((XV)	2	OK
高電位(HXV)	0	キャンセル
低電位(<u>L</u> XV)	0	ヘルブ(H)
初期スキャン/極性(产)	Negative -	-(10.2.00)
スキャン速度(RXV/s)	0.1	
スィーブセグメント(w)	2	
サンブル間隔(血)(ン)	0.001	
静止時間(<u>Q</u>)(sec)	2	
感度(<u>S</u> XA/V)	1.e-006 +	
□ スキャン速度が0.011	//s以下の場合、自動	b感度(A)
□ スキャンサイクル終う	7	
□ スキャン速度が 0.25	V/s以上の場合 捕	助信号を記録

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
高電位 (V)	-10 ∼ +10	ポテンシャルスキャン高電位リミット
低電位 (V)	-10 ∼ +10	ポテンシャルスキャン低電位リミット
初期スキャン極性	Positive または Negative	初期スキャンの方向
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 10,000$	ポテンシャルのスキャン速度
	1 1 000 000	半サイクルは1セグメント、スィープセグメ
スィープセグメント	1 ~ 1,000,000	ント
サンプル間隔 (V)	$1 \times 10^{-3} \sim 0.064$	データサンプリング間隔
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
自動感度	チェックまたは未チェック	測定時の自動感度
スキャンサイクル終了	チェックまたは未チェック	スキャンサイクル終了
対明信見の割組	* * * * * * * * * * * * * * * * * * *	スキャン速度が 0.25V/s 以下の時、同時に外
補助信号の記録	チェックまたは未チェック	部信号を記録する

注

- 1. 高電位、低電位は少なくとも 0.01 V 離して下さい。
- 2. 間違えた高電位、低電位が入力した場合、システムは自動的にそれらの値を再調整します。
- 3. 初期電位、高電位、低電位に依存して、システムは自動的に初期スキャン方向を再調整します。
- 4. 最高ポテンシャルスキャン範囲は 13.1V です。
- 5. スキャン速度が 1,000 V/s 以下の場合、ポテンシャルの増加分は 0.1 mV です。スキャン速度が 5,000 V/s の場合、ポテンシャルの増加分は 1 mV です。
- 6. スキャン速度が 1,000 V/s 以下の場合、サンプル間隔は 1 mV です。スキャン速度が 2,000 V/s の場合サンプル間隔は 2 mV です。スキャン速度が 10,000 V/s 以下の場合、サンプル間隔は 10 mV です。早いスキャン速度の場合、データサンプリング間隔は自動的に増加します。
- 7. スィープセグメント数が大きくなると、データサンプリング間隔は自動的に 0.02V まで増加します。スキャン速度が 0.5V/s 以上の場合、スィープセグメント数はメモリサイズにより制限 (64,000 ポイント) されます。スキャン速度が低い場合、指定のスィープセグメントは実行されますが、セグメントの限界数だけが保存されます。スィープセグメントを大きくすると、電極の前処理に有効です。
- 8. スキャン速度が 0.01~V/s~以下の場合、測定中の感度は自動的に電流レベルに応じて変更されます。自動感度が起動された時、感度選択は測定には影響がありません。しかし、 $10^{-12}\sim0.2~A/V$ の代わりに自動感度範囲は $10^{-8}\sim0.2~A/V$ です。ピコアンペアブースターは動作しません。より高い感度を選択するためには自動感度の設定をオフにする必要があります。
- 9. スキャンサイクル終了は初期電位が高電位、低電位と異なる場合と、スィープセグメントが3、5、7、9(奇数)のみ働きます。スキャンサイクル終了が働く時、最後のセグメントは高電位、低電位の代わりに初期電位で停止します。
- 10. スキャン速度が 0.25V/s 以下の場合、ボルタングラムと同時に外部電圧信号 (分光器信号等)を記録できます。信号入力用の背面の 9 ピン D コネクターを使用します。ユーザーマニュアルを参照してください。

リニアースィープボルタンメトリーパラメータ

リニアースィープボルタンメトリーパラメータダイアログボックスを示します。:

切期電位(<u>)</u> XV)	3	OK
最終電位(<u>F</u> XV)	0	キャンセル
スキャン速度(<u>R</u> XV/s)	0.1	ヘルプ(H)
サンブル間隔(血)(ン)	0.001	100000
静止時間(Q)(sec)	2	
感度(<u>S</u> XA/V)	1.e-006 →	
□ 中心電位として静止す	電位(0)を使用	
□ スキャン速度が0.01	V/s以下の場合、自動	n感度(A)
□ スキャン速度が 0.25	V/s以上の場合、補助	か信号を記録

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	ポテンシャルスキャン高電位リミット
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 10,000$	ポテンシャルのスキャン速度
サンプル間隔 (V)	$1 \times 10^{-3} \sim 0.064$	データサンプリング間隔
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
卢科民	<i>*</i>	スキャン速度が 0.01V/s 以下の時、測定は自
自動感度	チェックまたは未チェック	動感度
スキャンサイクル終了	チェックまたは未チェック	スキャンサイクル終了
441.51 6314	<i>*</i> * * * * * * * * * * * * * * * * * *	スキャン速度が 0.25V/s 以下の時、同時に外
補助信号の記録	チェックまたは未チェック	部信号を記録する

- 1. 高電位、低電位は少なくとも 0.01 V 離して下さい。
- 2. 最高ポテンシャルスキャン範囲は 13.1V です。
- 3. スキャン速度が 500 V/s 以下の場合、ポテンシャルの増加分は 0.1 mV です。スキャン速度が 5,000 V/s の場合、ポテンシャルの増加分は 1 mV です。スキャン速度が 10,000 V/s の合、ポテンシャルの増加分は 2 mV です。
- 4. スキャン速度が 1,000 V/s 以下の場合、サンプル間隔は 1 mV です。スキャン速度が 2,000 V/s の場合サンプル間隔は 2 mV です。スキャン速度が 10,000 V/s の場合、サンプル間隔は 10 mV です。早いスキャン速度の場合、データサンプリング間隔は自動的に増加します。
- 5. スキャン速度が 0.01~V/s~以下の場合、測定中の感度は自動的に電流レベルに応じて変更されます。自動感度が起動された時、感度選択は測定には影響がありません。しかし、 $10^{-12}\sim0.2~A/V$ の代わりに自動感度範囲は $10^{-8}\sim0.2~A/V$ です。ピコアンペアブースターは動作しません。より高い感度を選択するためには自動感度の設定をオッフにする必要があります。
- 6. スキャン速度が 0.25V/s 以下の場合、ボルタングラムと同時に外部電圧信号 (分光器信号等)を記録できます。信号入力用の背面の 9 ピン D コネクターを使用します。ユーザーマニュアルを参照してください。
- 7. 直線分極抵抗プロットはグラフメニューのスペシャルプロットコマンドから実行できます。

ターフェルプロットパラメータ

ターフェルプロットパラメータのダイアログボックスを示します。:

初期電位(<u>)</u> XV)	3	OK
最終電位(FXV)	0	キャンセル
スィープセグメント(<u>S</u>)	1	ヘルプ(H)
最終電位での保持時間(<u>H</u>)(s)	0	
スキャン速度(<u>R</u>)(V/s)	0.01	
静止時間(<u>Q</u>)(sec)	2	
感度(S)(A/V)	1.e-006 ₩	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
スィープセグメント	1 ~ 2	半サイクルが1セグメント、スィープセグメント
最終電位での保持時間	0 ~ 100,000	1番目のセグメント後、ポテンシャル保持時間
(s)		
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 0.01$	ポテンシャルスキャン速度
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキヤン開始前の静止時間
感度	$1 \times 10^{-12} \sim 0.2$	感度スケール
自動感度	チェックまたは未チェック	測定中の自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 腐食速度計算ははグラフメニュー下にあるスペシャルプロットコマンドにて実行できます。

ポテンシャルステップテクニック (CA, CC, STEP)

これらのテクニックでは、ポテンシャルをある値から第2の値に変化させ電流(クロノアンペロメトリー)または電荷(クロノクーロメトリー)応答を時間の関数としてモニターします(電荷は電流の積分であることに注意)。ある時間 τ の間第2の電位に保持した後、ポテンシャルを(しばしば元のポテンシャル値である)第3の値に変化させます。それゆえに、ポテンシャルステップ実験はシングルステップ、またはダブルステップとなります。

一般変数 はクロノアンペロメトリーとクロノクーロメトリーでわずかに異なります。クロノアンペロメトリーの場合、初期電位(初期 E)と高電位、低電位が必要となります。 ポテンシャルを初期電位 から低電位 または高電位 に変化させます(これは初期 P/N変数によって決まります)。時間 τ (パルス幅) 経過後に、ポテンシャルは反対の方向(低電位から高電位または高電位から低電位)に変化させ、 τ 時間この値の電位に保持します(図 4-4 参照)。クロノクーロメトリーの場合、ポテンシャルは初期電位(初期 E)と最終電位(最終 E)となります(図 4-5 参照)。

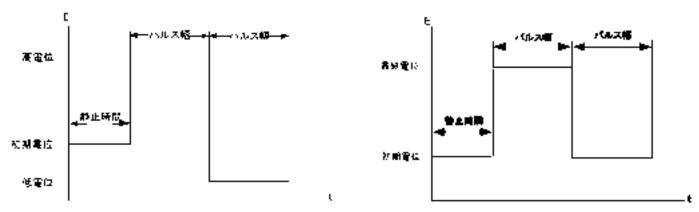


図 4-4 クロノアンペロメトリーのポテンシャル波形

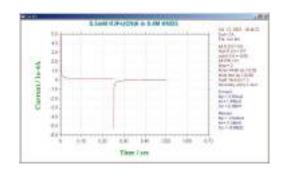
図 4-5 クロノクーロメトリーのポテンシャル波形

電流/電荷応答は初期電位と最終電位値に依存します。もしファラディー反応がどちらの電位でも 起こらないなら(ファラディー反応とは溶液での分子の電気分解です)、応答は電極の充電による電 流となります(充電即ち容量性電流またはバックグラウンド電流)。その応答は電流スパイクで指数 関数的に減少します。

しばしば、初期電位はファラディー反応が起こらない電位にし、最終電位はファラディー反応が 迅速に起こる電位にします。即ち、電気化学活性な分子は作用電極の表面に到着するとすぐに電気分 解されます。電流の大きさはバルク溶液から作用電極表面への物質移動速度により決まります。即ち、 拡散速度です。 拡散支配による電流は下記の Cottrell 式によって与えられます。

$$i = \frac{nFAD^{1/2}C}{\pi^{1/2}t^{1/2}}$$

ここで


i = 電流 (A)

n =電子移動数 / 分子当たり、 F =ファラディー定数 (96.500C/mole)

A =電極面積 (cm^2) 、 $D = 拡散係数 <math>(cm^2/s)$

C = 濃度 (mol / cm^3) 、 t = 時間 (s)

拡散支配によるファラディー電流は $t^{-1/2}$ で減衰します(典型的なクロノアンペログラム、図 4-6 参照)。 拡散支配による電荷($Q_{\rm diff}$)の同様な式は上式の積分となります。(即ち、Qは $t^{-1/2}$ に比例)そして典型的なクロノクーログラムを図 4-7 に示します。



図 4-6.CA クロノアンペログラム (電流 - 時間応答)

図 4-7.CC のクロノクーログラム (電荷 - 時間応答)

i と t $^{-1/2}$ または Q と t $^{1/2}$ の間の関係は電流(または電荷)が拡散によって厳密にコントロールされる時間間隔を調べるために使用されます。図 4-8 は時間に対する i/t $^{-1/2}$ のプロットです。 短時間における理論値からのズレはステップポテンシャルで作用電極を充電するのに必要な時間の長さによります。 長時間における理論値からのズレは自然対流によるものです。

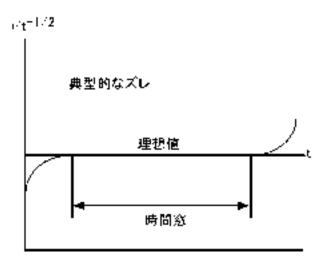


図 4-8. 電気化学システムの平面拡散条件における時間ウインドウを模式的にあらわす $i/t^{-1/2}$ (CA) プロット

CAとCC測定法は絶対濃度測定には使用しませんが、電解された分子の均一系化学反応による濃度変化を測定するために使用されます(3,4)。これはダブルステップテクニックを使い、フォワードとバックワード電流(電荷)の比を測定することにより行なわれます。もしフォワードステップで電解後に生成物が化学反応を起こすならば、これらの生成物分子は逆ステップで電解用に供給されにくくなります。それ故、化学反応が速くなればなるほど、逆ステップでの電流/電荷は小さくなります。化学反応速度は異なったパルス幅による電流(または電荷)比を測ることにより算出されます。

もし電子移動が迅速に起こらない値を最終電位にするならば、電流(または電荷)応答は拡散速度と同様不均一電子移動速度によって影響されるでしょう。従って電子移動速度はCAとCCによっ

て測定されます(5)。

CC は CA に比べて幾つかの利点があります。 シグナルは時間と共に増加します。応答の後半部分ははじめに集中する充電電流により歪められないので、良い S/N 比が得られます。加えて、電荷が実験中に加算されるので、初期応答からのインフォメーションも保持されます。

初期情報を保持することができる点を利用する別の CC の応用は作用電極の表面に吸着した種の検出です。このような種はポテンシャルが変化するやいなや、非常に速く電解されます。 クロノクーロメトリーの間に測定される総電荷は

$$Q=Q_{diff}+Q_{dl}+Q_{ads}$$

 Q_{ads} は作用電極の充電による電荷量、 Q_{ads} は吸着種の電解による電荷量で吸着物質の表面濃度に比例します。 3 つの成分のうち、 Q_{diff} だけが時間に依存します。従って、Anson プロットの切片は Q_{dl} + Q_{ads} になります。 Q_{ads} を算出する 1 つの方法はバックグラウンド溶液で CC 実験を行なうことにより Q_{dl} を測定し差を求めることです。

しかし、これは電気化学活性な種の有無に関わらず Q_{dl} は同じであると仮定しています;これは必ずしも真実でありません。一層正確な方法はダブルステップ CC を使うことです。 Q_{dl} はフォワード / リバースの Anson プロット(図 4-9)の切片の差を計算することにより除去できるからです。

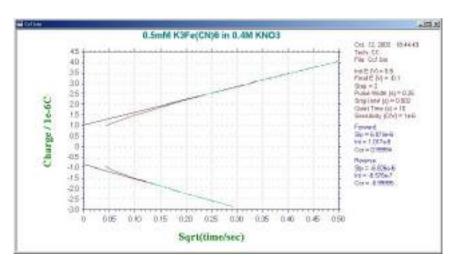
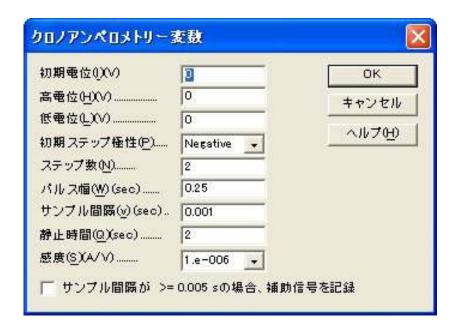
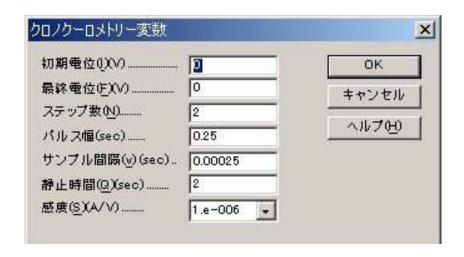



図 4-9. フォワード / リバースの Anson プロット

クロノアンペロメトリーパラメータ

クロノアンペロメトリーパラメータのダイアログボックスを示します。:


実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
高電位 (V)	-10 ∼ +10	ポテンシャルスキャン高電位リミット
低電位 (V)	-10 ∼ +10	ポテンシャルスキャン低電位リミット
初期スキャン極性	Positive または Negative	初期ステップの方向
ステップ数	$1 \sim 320$	ポテンシャルステップ数
パルス幅 (sec)	$1 \times 10^{-4} \sim 1,000$	ポテンシャルパルス幅
サンプル間隔 (s)	$1 \times 10^{-6} \sim 10$	サンプリング間隔
静止時間 (sec)	0 ~ 100,000	ポテンシャルステップ開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
法出与 見の割約	イ … カナナルナイ … カ	サンプル間隔が 0.005s 以上の時、同時に外部信号
補助信号の記録	チェックまたは未チェック	を記録する

- 1. 高電位と低電位は少なくとも 0.01 V 離して下さい。
- 2. 理由のない高電位、低電位が入力された場合、システムは自動的にそれらの値を再調整します。
- 3. 初期電位、高電位、低電位値に依存するので、システムは自動的に初期ステップ方向を再調整します。
- 4. 最高ポテンシャルステップ範囲は 13.1V です。
- 5. 短いサンプル間隔はデータ密度を上げますが、S/N 比は減少します。初期のトランジェントデータが重要な場合短いサンプル間隔が薦められます。目的のデータが後半部分であれば、長いサンプル間隔が薦められます。しかし、サンプリング速度が許可されない場合、ステップ当り最小100ポイントは必要です。
- 6. サンプル間隔が 0.002 秒より短い場合、データはリアルタイムベースで移動できません。実験終了後、データ転送します。測定オプションのセルオンが選択されていない場合、データ転送の間、セルはオフにします。実験開始からデータ転送まで遅延があります。内部メモリーサイズの限界によりデータのトータル数は 64K が限界です。サンプル間隔は自動的に最適範囲のデータポイントに調整されます。
- 7. サンプル間隔が 0.002 秒より長い場合、データは実験間に転送できます。最大 64K のデータポイントは各ステップで許容されます。サンプル間隔は自動的に最適範囲のデータポイントで調整されます。
- 8. サンプル間間隔が 0.005 秒以上の場合、電流と同時に外部電圧信号 (分光器信号等)を記録できます。信号入力用の背面の 9 ピン D コネクターを使用します。ユーザーマニュアルを参照してください。

クロノクーロメトリーパラメータ

クロノクーロメトリーパラメータダイアログボックスを示します。:

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
ステップ数	1 ~ 320	ポテンシャルステップ数
パルス幅 (sec)	$1 \times 10^{-4} \sim 1,000$	ポテンシャルパルス幅
サンプル間隔 (s)	$1 \times 10^{-6} \sim 10$	サンプリング間隔
静止時間 (sec)	0 ~ 100,000	ポテンシャルステップ開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 最高ポテンシャルステップ範囲は 13.1V です。
- 3. 短いサンプル間隔はデータ密度を上げますが、S/N 比は減少します。初期のトランジェントデータが重要な場合短いサンプル間隔が薦められます。目的のデータが後半部分であれば、長いサンプル間隔が薦められます。しかし、サンプリング速度が許可されない場合、ステップ当り最小1,000 ポイントは必要です。
- 4. 測定中、オーバーフロー警告が表れるかもしれません。これはポテンシャルステップ後すぐに電流トランジェントによるものです。アンソンプロット (Q-t^{1/2} plot) のインターセプト (二重層のキャパシタンスと吸着の情報を与える) に興味がない場合、その警告を心配する必要はありません。しかし、データの歪みを視覚化する場合、感度スケールを低下させなければなりません。時々、システムをスローダウンするために i/E コンバーターを使用する必要があるかもしれませんが、フィルターの時間定数 (1/ カットオフ周波数) はパルス幅より短いことを確認してください。ノイズを減少させ、測定精度を向上させるために、高感度スケールの使用を薦めます。
- 5. チャージは電流の積分により求められます。アンプのオフセットにより、ゼロ電流でチャージのドリフトが観察されるかもしれません。この問題を補正する方法としてはバックグラウンドの差分を使用します。セルケーブルを接続し、作用電極のリード線のみを外します。測定を行い、バックグラウンドデータとして保存します。次に作用電極のリード線を接続し、測定を行います。補正データを得るためにバックグラウンド差分を使用します。感度を変更した場合、同様にバックグラウンド測定が必要です。
- 6. サンプル間隔が 0.002 秒より短い場合、データはリアルタイムベースで移動できません。実験終了後、データ転送します。測定オプションのセルオンが選択されていない場合、データ転送の間、セルはオフにします。実験開始からデータ転送まで遅延があります。内部メモリーサイズの限界によりデータのトータル数は 64K が限界です。サンプル間隔は自動的に最適範囲のデータポイントに調整されます。
- 7. サンプル間隔が 0.002 秒より長い場合、データは実験間に転送できます。最大 64K のデータポイントは各ステップで許容されます。サンプル間隔は自動的に最適範囲のデータポイントで調整されます。

パルステクニック

リニアースイープテクニックの不利な点の1つはバッククラウンド(容量性電流)電流の存在です。そのためこれらのテクニックを濃度の定量に使うことは、得策ではありまません。 検出限界はこのバックグラウンド電流によって影響されます。

すべてのパルステクニックの基礎はポテンシャルステップ後のバックグラウンド電流とファラディー電流の減衰速度に差があることです。バックグラウンド電流は指数関数的に減衰し、一方、ファラディー 電流は $1/(\text{time})^{-1/2}$ の関数として減衰します。即ち、バックグラウンド電流の減衰速度はファラディー電流の減衰よりかなり速いのです。 バックグラウンド電流はポテンシャルステップ後、5RuCdl 時において無視できます(RuCdl は電気化学セルの時定数で μ s \sim ms 範囲になります)。 それゆえ、この時間後は、測定電流はファラディー電流だけになります。

パルステクニックの重要な変数は次の通りです。

- a. パルス振幅はポテンシャルパルスの高さで、mV表示です。
- b. パルス幅はポテンシャルパルスの継続時間で、msec 表示です。
- c. サンプル幅は電流が測定されるパルスの経過時間(msec)です。少なくともパルス幅より 3msec 短くなければなりません(3msec は容量性電流がゼロに減衰するために必要)。電流は msec 当たり 16 回サンプリングされ平均されます。サンプル時間のデフォルト値は 17msec です。つまり、これは商用電源 (60Hz) の 1 サイクルの時間です(従ってラインノイズは平均化してゼロになります)。
- d. パルス間隔 / 滴下時間 これは 1 ポテンシャルサイクル(msec)に必要とされる時間であり、少なくともパルス幅の二倍でなければなりません。パルス間隔がボルタンメトリー実験に使われ、滴下時間は ポーラログラフィー実験、ポテンシャルパルス、電流サンプリングと水銀滴の滴下は相互連関しています。

ポテンシャルパルス波形とサンプリング時間数が異なった3つのパルステクニックを紹介します。 バックグラウンド電流を除去できることが向上した感度と低い検出下限とあいまって(リニアース イープテクニックと比較して)これらの方法を濃度の定量の理想的なテクニックにしています。

階段波ボルタンメトリー (SCV)

直流ポーラログラフィー実験の改良版で、水銀滴の表面積の変化の効果を減少するように設計さ

れています。ポテンシャル波形を図 4-10 に示します。ポテンシャルは一定のステップで変化します (滴下時間サイクルと完全に同期させます)。電流は各々の滴下の終了時にサンプリングされます。滴下時間とステップのサイズを種々の値に設定できます。 このポテンシャル波形は時には階段波形とも言います。

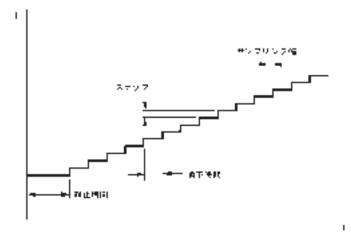


図 4-10.SCP のポテンシャル波形

電流応答は図 4-11 に示します。限界電流(i₄)は llkovic 式によって与えられます。

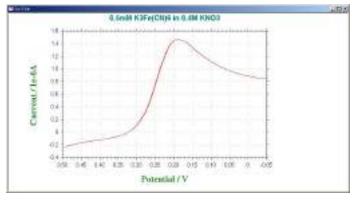


図 4-11.SCV の典型的な電流応答

$$i_d = 708 nD^{1/2}Cm^{2/3} \tau^{-1/6}$$

n=電子移動数/モル

D = 拡散係数 (cm²/s)

C = 濃度 (mol/cm^3)

m = 水銀流速 (mg/s)

τ = サンプリング間隔

SCV の感度と検出限界は直流ポーラログラフィー $(5 \mu \text{ A/mM}, 10^5 \text{ M})$ に類似しています。直流ポーラロに対する SCP の主要な利点はスムージングされた電流出力で、そのため半波電位と限界電流の測定が容易になります。

これは本質的にはポーラログラフィーテクニックですが、低スキャン速度ボルタンメトリーテクニックとして使えます。この改良版は階段状ボルタンメトリーと呼ばれます。

ノーマルパルスボルタンメトリー (NPV)

これらパルステクニックのポテンシャル波形は図 4-12 に 示します。これはパルス間での初期値に戻る電位と振幅が 増加する一連のパルスから構成されます。もし初期電位が 酸化還元電位より十分正であるなら、小さい振幅パルスの 印加ではファラディー反応を起せず、電流応答がありません。パルスポテンシャルが酸化還元電位付近にくるくらい、パルス振幅が十分に大きい時、パルスに対応したファラディー 反応 (適度に速い電子移動速度を仮定して)が起きます。そしてこのファラディー電流の大きさは拡散速度と 電子移動速度の両方に依存します。パルスポテンシャルが 酸化還元電位より十分負になり電子移動が速く起こるとき、

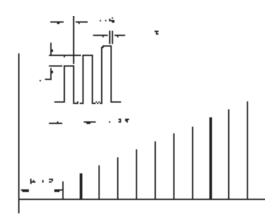


図 4-12.NPV / Pのポテンシャル波形

ファラディー電流は拡散速度だけに依存するようになります。 即ち、限界電流に達します。この電流 応答を図 4-13 に示します。シグモイド波形は古典的なポーラログラフィー実験で得られる波形曲線 に類似しています。この方法に対してノーマルパルス法と呼ぶのはそのためです。NPV の限界電流 は SCV より大きく、より高感度なテクニック($30\,\mu\,A/mM$)であり、低い検出下限($10^6\,M$)が得られます。

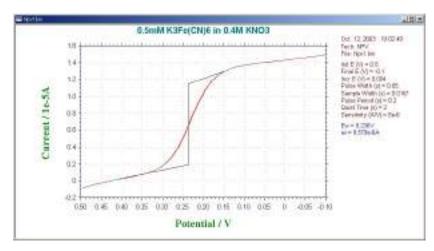


図 4-13.NPV / Pの典型的な電流応答

NPV では、初期電位はファラディー反応が起こらない値に設定します。

微分パルスボルタンメトリー (DPV)

DPV テクニックは先の2つのテクニックと異なり、電流は各パルス間隔で二度サンプリングされます。ポテンシャル波形は図4-14に示します。パルス振幅は一定であり、ベースポテンシャルが小さなステップで増加します。即ち、階段状波形に小さい振幅パルスを重畳しています。

電流はパルス前(i_1)とパルスの終了時(i_2)でサンプリングされます。差(i_2 - i_1)がベースポテンシャルの関数として記録されます。還元を例にしますと、レドレックスポテンシャルより十分正の電位では電極反応は起こらず、電流差はゼロです。レドックスポテンシャル近傍では電流差は最大に達し、拡散律速になると再び電流差はゼロに減少

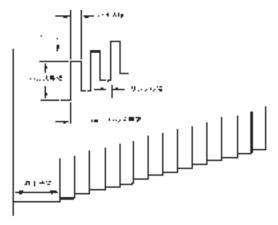


図 4-14.DPV のポテンシャル波形

します。ピーク形状の出力が得られます(図 4-15 参照)。DPV の感度は NPV と SCV の中間です $(20 \, \mu \, A \, / mM)$ 。しかし DPV の検出下限はバックグラウンド(容量性)は $10^{-7} M$ 以下になります。

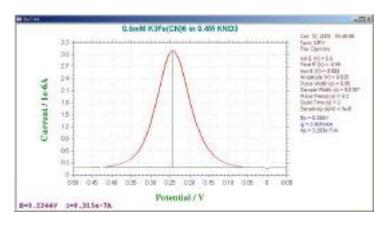


図 4-15DPV の典型的な電流応答

階段波ボルタンメトリーパラメータ

階段波ボルタンメトリーパラメータのダイアログボックスを示します。

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$1 \times 10^{-3} \sim 0.05$	各ステップの増加分電位
セグメント	1 ~ 1,000	スキャンセグメントの数
サンプリング幅 (sec)	$1 \times 10^{-4} \sim 50$	各ポイントのデータサンプリング幅
ステップ期間 (sec)	$0.001 \sim 2,500$	ポテンシャルステップ期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. サンプリング幅はステップ期間の 1/2 以下です。システムは自動的にサンプリング幅を再調整します。
- 3. データサンプリングは各ステップの終了時に行います。

微分パルスボルタンメトリーパラメータ

微分パルスボルタンメトリーパラメータダイアログボックスを示します。

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$\pm 0.001 \sim \pm 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	ポテンシャルパルス振幅
パルス幅 (sec)	$0.001 \sim 10$	ポテンシャルパルス幅
サンプリング幅 (sec)	$1 \times 10^{-4} \sim 10$	データサンプリング幅
パルス期間 (sec)	$0.01 \sim 50$	ポテンシャルパルス期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. パルス幅はパルス期間の1/2以下にします。システムは自動的にパルス幅を再調整します。
- 3. サンプリング幅はパルス幅の 1/2 以下にします。システムは自動的にサンプリング幅を再調整します。
- 4. パルス方向が電位スキャン方向と異なった場合、振幅がマイナスになります。

ノーマルパルスボルタンメトリーパラメータ

ノーマルパルスボルタンメトリーダイアログボックスを示します。:

切期電位(D(V)		OK
最終電位(<u>F</u>)(V)	0	キャンセル
電位増加分(E)(V)	0.004	ヘルプ(H)
ペルス幅(<u>W</u>) (sec)	0.05	100000
ナンプリング幅(<u>S</u>) (sec)	0.0167	
《ルス期間(P) (sec)	0.2	
爭止時間@)(sec)	2	
感度(S)(A/V)	1.e-006 ▼	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
パルス幅 (sec)	$0.001 \sim 10$	ポテンシャルパルス幅
サンプリング幅 (sec)	$1 \times 10^{-4} \sim 10$	データサンプリング幅
パルス期間 (sec)	$0.01 \sim 50$	ポテンシャルパルス期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. パルス幅はパルス期間の1/2以下にします。システムは自動的にパルス幅を再調整します。
- 3. サンプリング幅はパルス幅の 1/2 以下にします。システムは自動的にサンプリング幅を再調整します。

微分ノーマルパルスボルタンメトリーパラメータ

システムは微分ノーマルパルスボルタンメトリーパラメータを表示します:

刃期電位((XV)	2	OK
最終電位(E)(V)	0	キャンセル
電位増加分(E)(√)	0.004	ヘルプ(H)
版幅(A)(V)	0.05	- 1707 00
lst パルス幅(<u>W</u>)(sec)	0.05	
2nd パルス幅(<u>W</u>)(sec)	0.05	
サンプリング幅(<u>S</u>)(sec)	0.01 67	
パルス期間(P)(sec)	0.2	
静止時間(<u>Q</u>)(sec)	2	
感度(S)(A/V)	1.e-006 🕌	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	ポテンシャルパルス振幅
1次パルス幅 (sec)	$0.01 \sim 10$	第一次パルス幅
2 次 パルス幅 (sec)	$0.01 \sim 10$	第二次パルス幅
サンプリング幅 (sec)	$0.001 \sim 5$	データサンプリング幅
パルス期間 (sec)	$0.05 \sim 50$	ポテンシャルパルス期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
	~ <u></u>	ステップ1は一定電位またはオープン回路
初期電位でのオープン回路	チェックまたは未チェック	で保持できる

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 微分ノーマルパルスボルタンメトリーの場合、第一次ステップのパルスは電気化学反応が起こらない、通常初期電位に保持します。第二次ステップがサイクル毎に増加されます。電流サンプルは期間の後半部分で行われます。三度目の電位が第二ステップのように増加されますが、一定強度(振幅)による第二ポテンシャルよりさらにプラス(プラススキャンの場合)またはマイナス(マイナススキャンの場合)になります。第二サンプルは期間の後半部分で行われます。2つの電流サンプルの差は第二ポテンシャル関数として報告されます。
- 3. パルス幅はパルス期間の1/2以下にします。システムは自動的にパルス幅を再調整します。
- 4. サンプリング幅はパルス幅の 1/2 以下にします。システムは自動的にサンプリング幅を再調整 します。

矩形波テクニック (OSWV)

矩形波テクニックはパルステクニックと交流ボルタンメトリーテクニック両方に関係の深い方法です。それらは DPV/P に類似して、ピーク波形の電流応答曲線を与え、バックグラウンド容量性電流を効果的に除去します。主要な利点は高感度と迅速性です。

この波形を図 4-16 に示します。

OSWV のポテンシャル波形は階段波形に矩形波を重畳したものになります。 それは方向が交互に変わる一連のパルス (それ故、パルスと交流テクニック両方に関係している) と見なすことができます。 電流は各パルスの終了点 (或いは半サイク

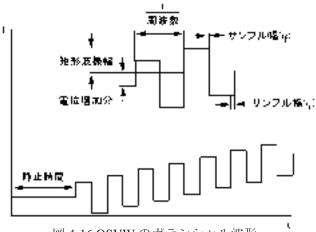


図 4-16.OSVW のポテンシャル波形

ル毎に)でサンプリングされます。デフォルト電流出力は差電流として与えられますが(図 4-17)、フォワード電流(i_r)とリバース電流(i_r)も同じく個別に求められます(図 4-18)。可逆系の場合、リバース電流も大きくなるので、差電流はフォワード電流或いはリバース電流のどちらよりも大きくなります。これが DPV と較べて OSWV が高感度である 1 つの理由です。リバース電流の大きさは電子移動の可逆性を調べるのに使われます。

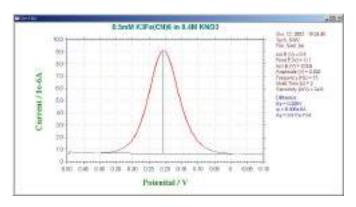
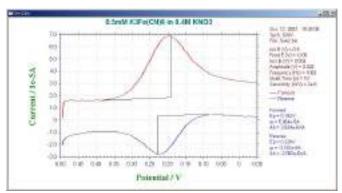
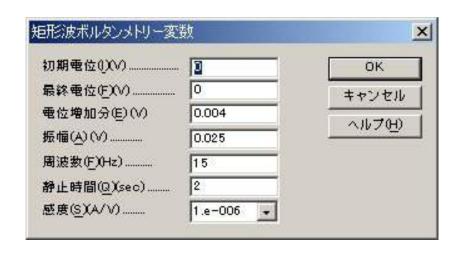


図 4-17OSWV の差電流応答




図 4-18.OSWV のフォワード電流とリバース電流応答

OSWV の他の利点は DPV/P に比較してそのスピードにあります。5,000V/s までのスキャン速度が利用できますが、典型的には 100mV/s ~数 V/s のスキャン速度が使われます。 (OSWV のスキャン速度は矩形波周波数に依存する)。これは DPV $(10 \sim 20mV/s)$ のスキャン速度より格段に速くなります。 更に、DPV と較べて感度は不可逆過程でさえスキャン速度の増加と伴に向上します。

OSWVの高感度と高スピードは溶液中の電気化学活性種の定量分析法としての汎用性を増しました。

矩形波ボルタンメトリーパラメータ

矩形波ボルタンメトリーパラメータのダイアログボックスを示す。:

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分(V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	矩形波振幅
周波数 (Hz)	$0.1 \sim 100,000$	矩形波周波数
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. フォワード、リバースと電流の差は記録されます。データ表示を設定するためにグラフィック スメニューのグラフオプションコマンドを使用します。
- 3. 振幅は電位増加分(階段ポテンシャル波形のポテンシャルステップの高さ)より大きくなければなりません。
- 4. スキャン速度 (mV/s) は周波数と電位増加分の積です。

AC. テクニック(ACV、SHACV)

正弦波の交流テクニックは本質的に2つに分類されます。交流インピーダンス法では、直流ポテンシャル(典型的にはレドックスポテンシャルに)は一定に保ち、小さい振幅の交流電位(ある範囲の可変周波数)が印加されます。

交流ボルタンメトリー法は交流インピーダンス法のバリエーションの1つです。周波数を一定にして、直流ポテンシャルをゆっくりと変化します(図 4-19)。作用電極の表面において酸化あるいは還元された種の濃度を変えるために直流ポテンシャルが使われます。そしてこれらの濃度に摂動を与えるために交流ポテン

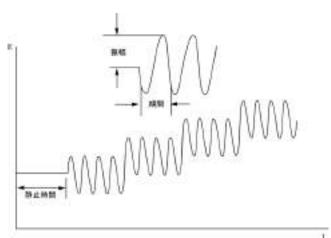


図 4-19.ACV と SHACV のポテンシャルの励起波形

シャルが重畳されます。交流ポテンシャルの効果は redox ポテンシャルにおいて最も大きくなります。従っ

て、ACV における交流電流応答はピーク 波形の曲線になります(図 4-20)。

交流電流応答は電子移動速度に依存しますので、交流ボルタンメトリーは基本的に電極過程の反応速度を調べるために使われます。これらのテクニックは同じく電極反応生成種の継続して起こる均一系の化学反応を調べるるために使われます。しかし他のテクニックは(例えば、サイクリックボルタンメトリー、クロノクーロメトリー)この方法より優れています。

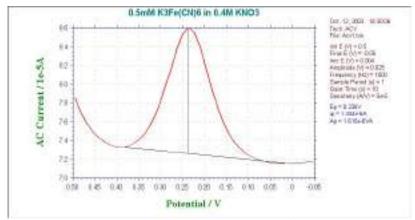


図 4-20.SHACV の典型的な電流応答

界面領域の等価的容量により、印加された交流ポテンシャルと交流電流応答間に位相差が生じます。異なった位相角で交流電流を測定するのがしばしば有用です。

理想的な可逆系の位相角 45° に対して凝可逆系(遅い電子移動の系)では、 45° より大きくなります。可逆性は実験のタイムスケールに依存しますので、交流周波数の増加はしばしば可逆系から凝可逆系への変化を生じさせます。(周波数) 12 に対する位相角のコタンジェントのプロットは電子移動速度を算出するために使用されます。

可逆系のピーク電流i。は次の式によって得られます。

$$i_p = \frac{n^2 F^2 \ \omega \ DC \triangle E}{4RT}$$

n = 電子移動数

F = ファラディー定数 (96,500 C /eq)

A = 電極表面積 (cm²)

ω = 2 π x (交流周波数)

D = 拡散係数 (cm²/s)

C = 濃度 (mol/cm^3)

△E = 交流ポテンシャルの振幅

系が可逆系から凝可逆系(そして更に不可逆系)へと変化するにつれて、 i_p は大幅に減少し、もはや $\omega^{1/2}$ に比例しません。(かつて不可逆過程は交流テクニックによって検出されないと言われていましたが、実際はそうではなく、ただそのような系ではピーク電流が小さくなります。)

交流ポテンシャルに対する交流電流応答は直線関係にありません。即ち、それは基本波とその高調波の和になります。セコンドハーモニック(第二高調波 SHACV/P)の周波数応答がしばしば使われます。このテクニックによって得られる情報は ACV/ Pや PSACV/ Pと同じです。加えるに、容量性電流の除去はより効果的であり、タイムスケールは短くなります。SHACV は電気分解された時、迅速に反応する種の酸化還元電位測定に使用されてきました。(サイクリックボルタンメトリー等に比べて SHACV のタイムスケールが短いので、電荷移動後に起こる化学反応の影響が軽減されます。)図4-21 に SHACV の典型例を示します。

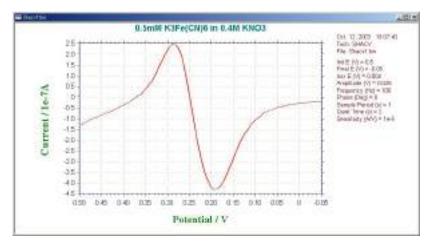
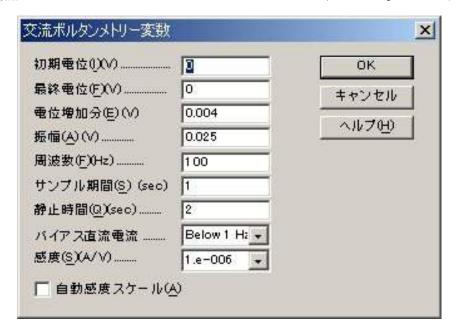



図 4-21SHACV の典型的な電流応答

交流ボルタンメトリーパラメータ

交流ボルタンメトリーパラメータのダイアログボックスを示めします。:

実験パラメータ、範囲、詳細は次の通り:

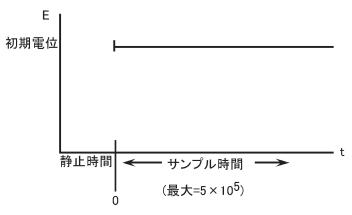
パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	交流振幅
周波数 (Hz)	1 ~ 10,000	交流周波数
サンプル期間 (sec)	1 ~ 64	データサンプリング期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
バイアス直流電流	off — range-on	測定中の直流電流バイアスを有効にする
自動感度	チェックまたは未チェック	測定中の切替えの自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 周波数範囲に依存しますので、正確な周波数は求めることができません。近似値の周波数が適用されます。
- 3. 周波数が 2 Hz または以下の場合、サンプル期間は少なくとも 2 秒にします。さもなければ、システムは自動的にサンプル期間を再調整します。
- 4. 直流電流が高く、交流電流が低い場合、直流電流のオーバーフローにより感度は増加しません。 周波数が低い場合、問題は深刻です。直流電流バイアスを適用し、高交流信号増幅を行います。 この目的のために 16bit DAC が用いられます。直流電流が大きくなく、周波数が高い場合、バイアス直流電流を使用する必要はありません。
- 5. 絶対電流、位相選択電流が入手できます。グラフィックメニューのグラフオプションコマンド を用いてデータ表示オプションを選択できます。

第二高調波交流ボルタンメトリーパラメータ

第二高調波交流ボルタンメトリーパラメータダイアログボックスを示します。:

実験パラメータ、範囲、詳細は次の通り:


パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	交流振幅
周波数 (Hz)	$1 \sim 5,000$	交流周波数
サンプル期間 (sec)	1 ~ 65	データサンプリング期間または滴下時間
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
バイアス直流電流	off — range-on	測定中の直流電流バイアスを有効にする
自動感度	チェックまたは未チェック	測定中の切替えの自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 周波数範囲に依存しますので、正確な周波数は求めることができません。近似値の周波数が適用されます。
- 3. 周波数が 2 Hz または以下の場合、サンプル期間は少なくとも 2 秒にします。さもなければ、システムは自動的にサンプル期間を再調整します。
- 4. 直流電流が高く、交流電流が低い場合、直流電流のオーバーフローにより感度は増加しません。 周波数が低い場合、問題は深刻です。直流電流バイアスを適用し、高交流信号増幅を行います。 この目的のために 16bit DAC が用いられます。直流電流が大きくなく、周波数が高い場合、バイアス直流電流を使用する必要はありません。
- 5. 絶対電流、位相選択電流が入手できます。グラフィックメニューのグラフオプションコマンド を用いてデータ表示オプションを選択できます。

アンペロメトリーテクニック (i-t)

これらはクロノアンペロメトリックテクニックです。即ち、電流は時間の関数として測定されます。 一般的に、このようなテクニックは電流滴定、アンペロメトリックセンサー、フローセル等に使われます。 利用できる3種類のテクニック間の差は使われるポテンシャル波形です。即ち、ポテンシャル波形は選択性を改善するために工夫されています。

最もシンプルなポテンシャル波形は固定電位です。これは i-t の波形です。i-t の波形と典型的な電流応答をそれぞれ図 4-22 と 4-23 に示します。

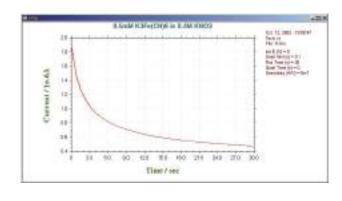


図 4-22. i-t のポテンシャル波形

図 4-23. i-t の典型的な電流応答

アンペロメトリーポテンシャル波形の1つの変形は一定振幅の連続パルスを重畳します(図 4-24)。これは微分パルス(DPA)テクニックです。電流はパルスの直前とパルスの終了直前にサンプリングされます。バックグラウンド電流の効果的な消去を行なうことができます。差電流が表示されますので、この方法はポテンシャルウインドウをチェックすることができ、検出の選択性を向上するのに役立ちます。DPA の典型的な電流応答を図 4-25 に示します。

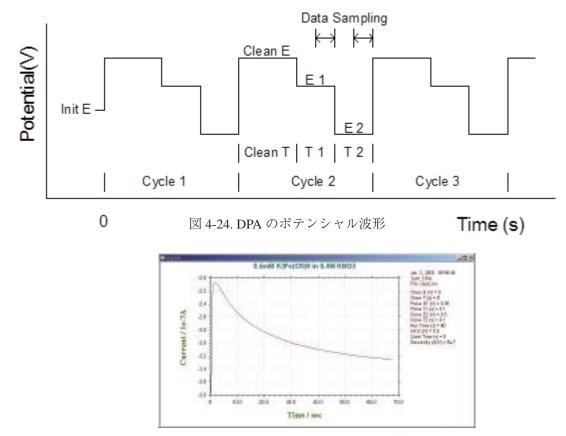


図 4-25. DPA の典型的な電流応答

アンペロメトリー i-t 曲線パラメータ

アンペロメトリー i-t 曲線パラメータダイアログボックスを示します:

D期電位(()(V/)	2	OK
サンブル間隔(g)(sec)	0.1	キャンセル
測定時間(T)(sec)	400	ヘルプ(H)
静止時間(<u>Q</u>)(sec)	0	
測定間のスケール(₫)	1: 🔾	
感度(<u>S</u>)(A/V)	1.e-006 ₩	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
サンプル間隔 (sec)	$1 \times 10^{-6} \sim 50$	データサンプル間隔
測定時間 (sec)	$0.001 \sim 5 \times 10^5$	トータルの測定時間
静止時間 (sec)	0 ~ 100,000	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール
対明信息の司組	エーックオセは土エーック	サンプリング間隔が 0.005 秒以上の場合、
補助信号の記録	チェックまたは未チェック	同時に外部信号記録

- 1. データサンプル間隔は計測時間により選択します。計測が長い場合、サンプル間隔を大きくし、 長いサンプル間隔にするとシグナルの平均化が向上し、ノイズが低下します。
- 2. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 3. サンプル間隔が 0.005s 以上の場合、アンペロメトリー応答と同時に外部電圧信号 (分光器信号 のように)を記録できます。信号入力用の背面の 9 ピン D コネクターを使用します。ユーザーマニュアルを参照してください。
- 5. 電流 1 が測定中表示される時、自動的にデータにフィットします。電流 2 が測定中表示される時、フルスケールの 1/100、1/10 となります。電流 3 が測定中表示される時、フルスケールの 1/100、1/10、1/1 となります。

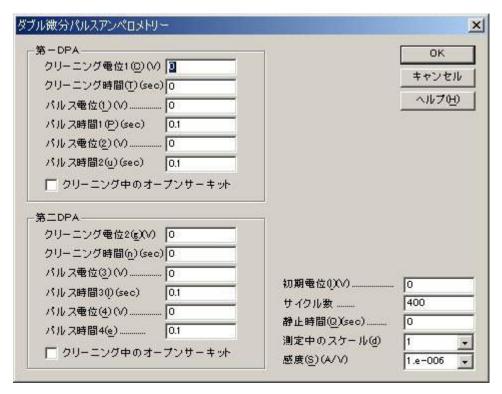
微分パルスアンペロメトリーパラメータ

微分パルスアンペロメトリーパラメータダイアログボックスを示します:

の期電位 (V)	3	OK
リーニング電位(Q)	0	キャンセル
/リーニング時間(<u>T</u>) (sed)0	ヘルブ(H)
「ルス電位(1)(V)	0	- 100000
(ルス時間1(P)(sec)	0.1	
(ルス電位2位)(V)	0	
「ルス時間2 (sec)	0.1	
ナイクル数	400	
∲止時間(<u>Q</u>)(sec)	0	
定中のスケール値	1	
	1.e-006 🔻	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	静止時間中の初期電位
クリーニング電位 (V)	-10 ∼ +10	電極クリーニング電位
クリーニング時間 (sec)	$0 \sim 32$	電極クリーニング時間
パルス電位 1 (V)	-10 ∼ +10	第一パルス電位
パルス時間 1 (sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 2 (V)	-10 ∼ +10	第二パルス電位
パルス時間 2 (sec)	$0.01 \sim 32$	第二パルス時間
サイクル数	$10 \sim 100,000$	繰り返しサイクル数
静止時間 (sec)	0 ~ 100,000	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$10^{-12} \sim 0.2$	感度スケール
クリーニング中のオー		クリーニングステップは一定電位またはオー
ブンサーキット	チェックまたは未チェック	プン回路のどちらか一方で行える

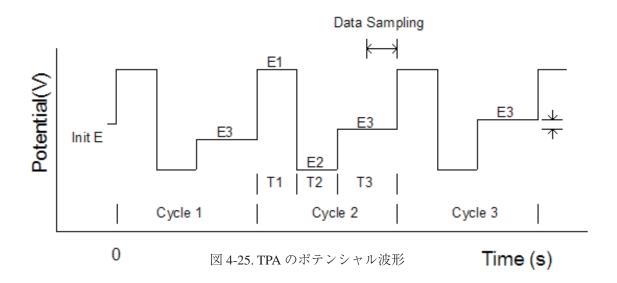

- 1. 測定順序はクリーニング、第一パルス、第二パルスからなります。この順序は総サイクル数に 到着またはユーザーにより中止されるまで繰り返されます。クリーニングステップの間、データサンプリングは行われません。クリーニング時間がゼロの場合、このステップは無視されます。 データは第一、第二パルス用にサンプリングされ、差が報告されます。
- 2. データはパルス1と2の後半の半期間でサンプリングされます。パルス幅が長くなりますと、 サンプル間隔も長くなります。長いサンプル間隔は良好な平均信号となり、ノイズが少なくな ります。
- 3. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。

そのためデータポイントは期待されない長い計測でもオーバーフローしません。

4. 電流 1 が測定中表示される時、自動的にデータにフィットします。電流 2 が測定中表示される時、フルスケールの 1/100、1/10 となります。電流 3 が測定中表示される時、フルスケールの 1/100、1/10、1/1 となります。

ダブル微分パルスアンペロメトリーパラメータ

ダブル微分パルスアンペロメトリーダイアログボックスを示します


実験パラメータ、範囲、詳細は次の通り:

	佐田	上 应
パラメータ	範囲	内容
First DPA:		
クリーニング電位 1 (V)	-10 ∼ +10	電極クリーニング電位
クリーニング時間 (sec)	$0 \sim 32$	電極クリーニング時間
パルス電位 1 (V)	-10 ∼ +10	第一パルス電位
パルス時間 1 (sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 2 (V)	-10 ∼ +10	第二パルス電位
パルス時間 2 (sec)	$0.01 \sim 32$	第二パルス時間
クリーニング中のオー	~	クリーニングステップ1は一定電位またはオー
ブンサーキット	チェックまたは未チェック	プンサーキットのどちらか一方で保持する
Second DPA:		
クリーニング電位 2 (V)	-10 ∼ +10	電極クリーニング電位
クリーニング時間 (sec)	0 ~ 32	電極クリーニング時間
パルス電位 3 (V)	-10 ∼ +10	第一パルス電位
パルス時間 3 (sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 4 (V)	-10 ∼ +10	第二パルス電位
パルス時間 4 (sec)	0.01 ~ 32	第二パルス時間
クリーニング中のオー		クリーニングステップ2は一定電位またはオー
ブンサーキット	チェックまたは未チェック	プンサーキットのどちらか一方で保持する
初期電位 (V)	-10 ∼ +10	静止時間中の初期電位
サイクル数	10 ~ 100,000	繰り返しサイクル数
静止時間 (sec)	$0 \sim 100,000$	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$10^{-12} \sim 0.2$	感度スケール

- 1. 測定順序は第一 DPA クリーニング、第一パルス、第二パルス、次に second DPA クリーニング、第一パルス、第二パルスからなります。この順序は総サイクル数に到着またはユーザーにより中止されるまで繰り返されます。クリーニングステップの間、データサンプリングは行われません。クリーニング時間がゼロの場合、このステップは無視されます。データは第一、第二パルス用にサンプリングされ、差分が報告されます。2 組のデータが得られます。
- 2. データはパルス1と2の後半の半期間でサンプリングされます。パルス幅が長くなりますと、 サンプル間隔も長くなります。長いサンプル間隔は良好な信号となり、ノイズが少なくなります。
- 3. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 4. 電流 1 が測定中表示される時、自動的にデータにフィットします。電流 2 が測定中表示される時、フルスケールの 1/100、1/10 となります。電流 3 が測定中表示される時、フルスケールの 1/100、1/10、1/1 となります。
- 5. 1次か、2次 DPA か、両方のデータを表示させる場合、グラフィックメニューのグラフオプションコマンドを用いてデータ表示オプションを選択します。

トリプルパルスアンペロメトリー (TPA)

単純なアンペロメトリーでは還元糖、第一級アミン、チオールの検出は高電位を必要としますので感度と選択性が低減します。トリプルパルスポテンシャル波形(TPA)は特にこれらの分子に適しています。名前が示すように3つのポテンシャルパルスが遂次的に印加され、電流はE3パルスの終了時にサンプリングされます。(図 4-25) この波形は必要なサイクル数繰り返され、そして電流サンプルの1が時間の関数として提示されます。(図 4-26)(他の2つは後の処理のために保存されます。)糖の検出の場合、パルス列は次の通り:1番目のパルスは電極表面をきれいにし、表面に酸化層を作ります。第2のパルスは電極に目的の分子を吸着させるポテンシャルです。そしてこれらの分子の検出は3番目のパルスで行なわれます。これは特殊な例の場合ですから、TPA は多くの電気化学センサーの応用に使用することができる一般的な目的の波形と考えるべきでしょう。

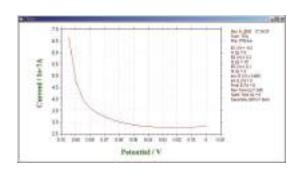
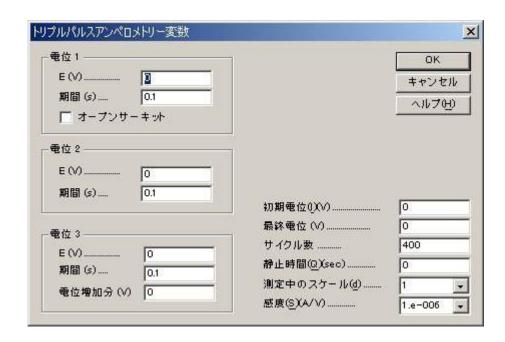



図 4-26. TPA の典型的な電流応答

トリプルパルスアンペロメトリーパラメータ

トリプルパルスアンペロメトリーダイアログボックスを示します:

実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
電位 1 (V)	-10 ~ 10	第一パルス電位
期間 1 (sec)	0 ~ 32	第一パルス期間
オーブンサーキット	チェックまたは未チェック	ステップ1は一定電位またはオープン回路の どちらか一方で行える
電位 2 (V)	-10 ~ 10	第二パルス電位
期間 2 (sec)	$0 \sim 32$	第二パルス期間
電位 3 (V)	-10 ∼ +10	第三パルス電位
期間 3 (sec)	0.01 ~ 32	第三パルス期間
増加分電位 (V)	$0 \sim 0.2$	増加分電位
初期電位 (V)	-10 ∼ +10	静止時間中の初期電位
最終電位 (V)	-10 ∼ +10	スキャンの最終電位
サイクル数	$10 \sim 100,000$	繰り返しサイクル数
静止時間 (sec)	0 ~ 100,000	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$10^{-12} \sim 0.2$	感度スケール

- 1. 測定順序は第一パルス、第二パルス、第三パルスからなります。この順序は総サイクル数の測定時間またはユーザーにより中止されるまで繰り返されます。第一、第二パルスの間データサンプリングは行われません。電極クリーニングに使用されます。第一、第二パルス時間がゼロの場合、これに相当するステップは無視されます。第三パルスのデータのみサンプリングされ、差分が報告されます。2組のデータが得られます。
- 2. 増加分電位がゼロで無い場合、実験は E3 で開始し、最終電位で終了します。E3 と最終電位は 少なくとも 0.01V 離して下さい。サイクル数は効果がありません。
- 3. データはパルスの後半の半期間でサンプリングされます。パルス幅が長くなりますと、サンプル間隔も長くなります。長いサンプル間隔は良好な信号となり、ノイズが少なくなります。
- 4. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 4. 電流 1 が測定中表示される時、自動的にデータにフィットします。電流 2 が測定中表示される時、フルスケールの 1/100、1/10 となります。電流 3 が測定中表示される時、フルスケールの 1/100、1/10、1/1 となります。

クロノクーロメトリーによるバルク電気分解(BE)

バルク電気分解法(BE)の原理は非常に単純です。もし酸化された種のみが最初に存在するなら、ポテンシャルを速やかに還元を起こすに十分な負の値に設定し、還元種のみが溶液に存在するまでこの値を維持します。BE 実験中に通った総電荷(Q)はファラディー法則を通して最初に存在する酸化種のモル数(N)と分子当たりの電子移動数(n)と関連づけられます。

ここでFはファラディー定数(96,500C/モル)です。 従って、もしn或いはNのどちらかが既知ならば、一方を算出できます。BEは分析と合成両方に応用できます

BEに必要なセルはボルタンメトリー実験に必要とされるセルとは異なります(ボルタンメトリーでは目的の電気化学活性分子のほんの一部が電解されるだけです)。大きい表面積(たとえば、白金金網或いは水銀プール)を持った作用電極と大きい表面積(例えば、白金コイル或いは金網)を持ったカウンター電極を使うことによって電解の速度は向上します。作用電極への物質移動速度を増やすため溶液を撹拌します。カウンター電極は作用電極と隔離し、カウンター電極の電解生成物と作用電極での電気分解種との干渉を防止します。作用電極とカウンター電極を隔離する材料の選択には注意を払わなければなりません。材料の電気抵抗が大きいと電解の効率に影響を及ぼす可能性があります。

BE実験の前に、ポテンシャルを選択します。還元の場合、理想的なポテンシャルは酸化還元電位 (例えば、サイクリックボルタンメトリー測定) より約 200mV 負にします。電解の速度は作用電極への物質移動速度によって支配されます。しかしながら、他の電気化学活性物質(例えば、電解液、溶媒、溶液中の他の成分)の電解電位が近いと、酸化還元電位とあまり隔った電位を使用できない場合があります。

BE 実験中、PC モニターの時計は実験時間を表示します。各データ取り込み時間毎にその間に通った電流とそれまでの総電荷がモニターに表示されます。 1 番目のインターバルの平均電流と各インターバルの平均電流比も表示されます。この比率は電解の程度を判定するための重要な基準になります。即ち、この比率が 1 %(バックグラウンド電流である残余電流)に達した時、一般的に電解は終了となります。最終電流比はユーザーによっても設定できます(1 % はデフォルト値です)。数値データーに加えて(下記参照)、電荷 対 時間プロット(図 4-28)または電流 対 時間プロット(図 4-29)で結果が表示されます。

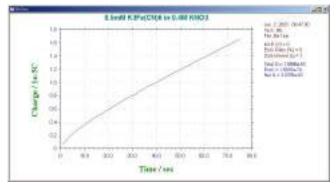


図 4-28. 典型的な BE の電荷 対 時間プロット

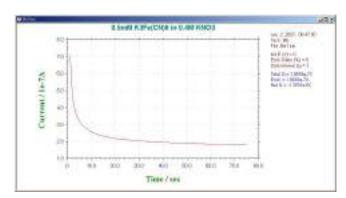


図 4-29 典型的な BE の電流 対 時間プロット

バルク電気分解―クーロメトリーパラメータ

バルク電気分解―クーロメトリーパラメータダイアログボックスを示します。:

电氦分解电位(E)(V)	3	ОК
最終電流比(<u>P</u>)06)	0	キャンセル
データ保存間隔(<u>D</u> Xs)	1	
付電解電位(P_XV)	0	ヘルプ(<u>リ</u>)

実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
電気分解電位 (V)	-10 ∼ +10	電気分解電位
最終電流比(%)	$0 \sim 100$	この電流比で実験停止
データ保存間隔 (s)	$0.01 \sim 100$	データ表示、保存間隔
前電解電位 (V)	-10 ∼ +10	前電解電位
前電解時間 (s)	0 ~ 100,000	前電解時間

- 1. 通常の電気分解の前に前電解ステップが許可されます。これは残存電流を減少させるのに有効です。前電解終了時の電流は残存電流としてみなされ、トータルチャージから任意のネットチャージを差引きます。前電解時間がゼロの場合、このステップは無視されます。測定停止コマンドをいつでも押すことにより、前電解は停止します。 通常の電気分解はすぐ行えます。
- 2. 実験中感度スケールは自動的に切り替わります。
- 3. 電流比は初期電流に関係します。データ保存間隔が1秒の場合、初期電流は電気分解後の最初の1秒の平均電流です。
- 4. 最終電流比がゼロの場合、電気分解は永久に続きます。実験を停止する場合、停止コマンドを実行します。
- 5. 計測中、データはデータ保存間隔と同じ速度で更新されます。
- 6. データ保存間隔は計測時間に応じて選択されます。計測時間が長い場合、データ保存間隔は長くなります。長いデータ保存間隔はシグナルが良好で、ノイズが少なくなりますが、薄層セルの場合、短いデータ保存時間は電気分解プロセスの詳細を観察するために使用します。
- 7. 電気分解中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。そのためデータポイントは長い計測でもオーバーフローしません。

ハイドロダイナミックテクニック(HDM)

印加電位への電流応答は多くの因子によって決められます。そのうちでも重要な 2 点は電子移動速度とバルク溶液から作用電極表面へ向かう物質移動速度です。 物質移動が起こるには 3 つの方法があります。

- 1. 拡散ー濃度勾配による分子運動
- 2. 泳動一電界勾配による分子運動
- 3. 対流ー撹拌等の外乱よって起こる分子運動

ボルタンメトリー実験から定量的データを得るためには、物質移動モードが数学的に解析しやすい形に定義されていることが重要です。十分解離した電解液の添加によってすべてのボルタンメトリー実験から泳動の効果が無視できるようにします。拡散と対流だけを考慮する系を選びます。

多数のボルタンメトリー実験で、溶液を撹拌せず、外部の振動を防止することにより対流が除去されます(このような条件は比較的短時間しか維持されません)。静止溶液状態を使用するボルタンメトリーはサイクリックボルタンメトリー(CV)、クロノクーロメトリー、パルス、矩形波テクニックを含みます。対流なしの条件を持続することの実験的難しさに加えて、拡散支配の実験は物質移動速度を変える方法がないことが限界となります。

ハイドロダイナミックテクニックでは、分子はよく定義された方法で電極表面に運ばれます。すなわち溶液を撹拌するか、或いは液体クロマトグラフィー/電気化学のようにポンプでフローセルに溶液を流します。最も広く採用されている方法は、回転ディスク電極を使って電極を回転することです。

ハイドロダイナミックテクニックは電極表面へ出入する物質移動速度の向上の結果、静止溶液テクニック以上に多くの利点を持っています。物質移動と電子移動が釣り合う結果、より速い物質移動速度は定常状態に早く達することができ、スキャン速度が十分に遅い場合にかぎり(典型的には約20mV/s以下)定常状態が維持されます。定常状態ボルタンメトリーの1つの利点はある与えられた電位で電流がスキャン方向と時間の両方に依存しないことです。この場合、ボルタモグラムはシグモイド曲線になるのが特徴です。速い物質移動は定量分析の感度を向上させ、回転デイスク電極はストリッピング実験の析出ステップでよく使用されます。

可逆プロセスの限界電流(物質移動支配の電流)は Levich 式で与えられます

$i=0.62nFACD^{2/3} \omega^{1/2} v$

n = 電子移動数/mole

F = ファラディー定数 (96,500C/mole)

A = 電極面積 (cm²)

C = 濃度 (mole/cm 3)

D = 拡散係数 (cm²/s)

ω = 2 π f ((□転数) /rps)

v = 動的粘度

従って、可逆プロセスの i_1 対 $\omega^{1/2}$ のプロットは直線(Levich プロット)になります。 この場合、可逆とは物質移動速度と比較して速い電子移動が必要なこと、即ち、回転速度を増すとレドックス反応は可逆から凝可逆に移行する可能性があります。これは Levich プロットで 直線性からのズレに表われます。 電子移動速度は回転速度を無限に外挿した時の電流(kinetic current)から算出されます。

この kinetic current は逆 Levich プロット($1/i_1$ 対 $1/\omega^{1/2}$)の切片から求められます。この方法は腐食とバッテリーの研究にしばしば使用されます。また電極表面上に被覆したポリマーフィルムを通る電子移動速度の測定にも使われます。

図 4-30 典型的な回転速度Aと時間に対する電位波形B

ハイドロダイナミックモジュレーション(HDM)は回転周波数を正弦波的に変化させる関連テクニックです。 i_1 は $\omega^{1/2}$ に比例する一方、 $\omega^{1/2}$ 自身も変化します。交流電流は通常のデータ処理法で処理されます。即ち、フィルターを通した後、整流又は位相弁別検出後にデータ処理されます。

Levich 式によれば、 i_1 =K $\omega^{1/2}$ であり、ここで $\omega^{1/2}$ = $\omega_0^{1/2}$ + $\Delta \omega^{1/2}$ sin σ t (ω_0 は中心回転速度で周波数 σ , 振幅 $\Delta \omega^{1/2}$ のサイン波形で変調されます。図 4-31 参照)交流電流出力は図 4-32 で示され、 Δ i は下記式によって与えられます。

$$\Delta i = \left(\frac{\Delta \omega}{\omega_0}\right) i \omega_0$$

図 4-31.HDM テクニックを用いた回転速度の変調

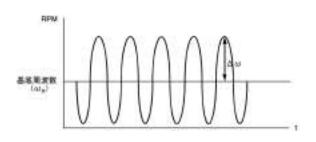


図 4-32.HDM の交流電流出力

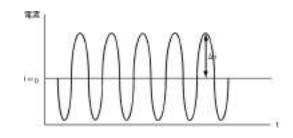


図 4-33.RDE の典型的な電流応答

回転ディスク電極制御	×
回転速度(S)(rpm) 2000	ОК
▼ 析出時間中の回転(D)	キャンセル
□ 静止時間中の回転(②)	ヘルプ(H)
測定中の回転(R)	
測定間の回転(6)	

ハイドロダイナミック変調ボルタンメトリーパラメータ

ハイドロダイナミック変調ボルタンメトリーパラメータダイアログボックスを示します。:

刃期電位0XV/	2	OK
最終電位(F)(V)	0	キャンセル
电位增加分 (E)(√)	0.004	
回転速度(R)(rpm)	3000	ヘルプ(円)
変調周波数(<u>F</u>)(Hz)	2	
変調振幅(A)(rpm)	100	
サイクル数(N)	1	
静止時間(<u>Q</u>)(sec)	2	
感度(S)(A/V)	1.e-006 🔻	

実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.02$	各ステップの電位増加分
回転速度 (rpm)	$0 \sim 10,000$	中心部の回転速度
変調周波数 (Hz)	$1\sim 5$	変調周波数
変調振幅 (rpm)	$0 \sim 3,600$	変調振幅 ^{注2参照}
サイクル数	$1 \sim 10$	変調サイクル数
静止時間 (sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.2$	感度スケール

注:

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. ハイドロダイナミックモジュレーションの実際の回転速度は

$$w^{1/2} = w_0^{1/2} + \Delta w^{1/2} \sin(s t)$$

注意:変調ファンクションはサイン波ではなく、更に複雑ですが、周波数 σ (変調周波数)の定期的な波形です。回転速度 ω 。は付近に変動しますが、変動の振幅は対称ではありません。入力パラメータ $\Delta\omega$ (変調振幅)は実際の振幅ではありませんが、上記式での二乗です。

スィープ - ステップファンクションパラメータ

スィープ - ステップファンクションパラメータダイアログボックスを表示します。

Sequence 1:スィープ	Sequence 5: スィープ	Sequence 9: スィーブ	ОК
刀期電位0,次√) ■	初期電位((XV) 0	初期電位((XV) 0	キャンセル
最終電位(EXV) 0	最終電位(FXV) 0	最終電位(EXV) 0	-
スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	
Sequence 2: ステップ ―――	Sequence 6: ステップ	Sequence 10: ステップ	
ステップ E(ソ)	ステップE(V)	ステップ E (V)	
ステップ時間(s) 0	ステップ時間(s) 0	ステップ時間(s) 0	
Sequence 3: スィープ	Sequence 7 スィーブ	Sequence 11: スィーブ	
辺期電位(),((√) 0	初期電位((XV) 0	初期電位()(((()	
最終電位(EXV) o	最終電位(F)(V/) O	最終電位(E)(V) O	── 初期電位 (√) O
スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スィープ S.I. (V) 0.001
Sequence 4: ステップ	Sequence 8: ステップ	Sequence 12: ステップ	ステップ S.I.(s) 0.002
ステップ E(V)	ステップE(Ѵ)	ステップE(Ѵ)	静止時間 (sec) 2
ステップ時間(s) 0	ステップ時間(s) 0	ステップ時間(s) 0	

実験パラメータ、範囲、詳細は次の通りです。:

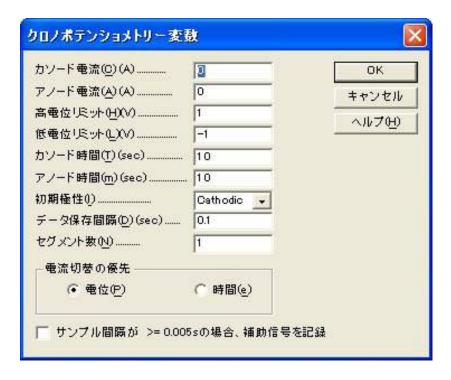
パラメータ	———— 範囲	内容
順番 1, 3, 5, 7, 9, 11		
スィープ:		
初期電位 (V)	-10 ∼ +10	初期電位
最終電位 (V)	-10 ∼ +10	最終電位
スキャン速度 (V/s)	$10^{-6} \sim 50$	ポテンシャルスキャン速度
順番 2, 4, 6, 8, 10, 12		
ステップ		
ステップ 電位 (V)	-10 ∼ +10	ステップ電位
ステップ時間 (s)	$0 \sim 10,000$	ステップ機関
初期電位 (V)	-10 ∼ +10	初期電位
スィープサンプル間隔 (V)	$0.001 \sim 0.05$	スィープファンクションサンプル間隔
ステップサンプル間隔 (s)	$0.0001 \sim 1$	ステップファンクションサンプル間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$10^{-12} \sim 0.2$	感度スケール

- 1. スィープファンクションの場合、初期電位と最終電位の差が 0.01V 以下の場合、このセグメントは無視されます。
- 2. ステップファンクションの場合、ステップ時間が 0.001 秒以下か、ポイント数が 3 以下の場合、 このセグメントは無視されます。ステップ時間を増やすか、サンプル間隔を減少する必要になります。
- 3. スィープファンクションのスキャン速度が 0.5V/s 以下ならば、データはリアルタイムに転送され、表示されます。
- 4. ステップファンクションのサンプル間隔が 0.002 秒より大きい場合、データはリアルタイムに 転送され、表示されます。
- 6. 初期電位、最終電位、ステップ電位の電位差は 13.1V 以下にして下さい。

マルチ - ポテンシャルステップパラメータ

マルチ - ポテンシャルステップパラメータダイアログボックスを表示します

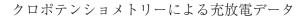
ステップ! ステップを(V)	ステップ 5 ステップ 5 (V) [0	ステップ ! ステップ E (V) ロ	ak 4v>tri
ステップ時間(6) 02	ステップ機能(S) [0	ステップ病情(6) 0	
E=972	ステップの	ステップ10	1070
プテップモ(V)	ステップ 年(V) [0	ステップ E(V) (19
2チップ発剤(6) (0	ステップ級関係。 ロ	ステンプ時間 (i) 0	
2 5 971	ステップ!	27 97 II	
Rチップを(M)(0	ステップ 6(4)(0	ステップ E(W) 0	初期考性 (V) [0
ならけ時間(6) 0	スナップ時間(6) ロ	ステップ時間(6) 0	初期者性(V) [0 サイクルカ [1
₹ 7 -77-4	27·27 #	27 77 12	サンブル登稿(6) 回900
2テップを含む	25976W0	スチップ E(V) 0	新生物間 (see) 2
オテップ時間(6) 0	ステップ時間(公) 0	ステップ時間(6) 0	MA (4/V) [1 a-006

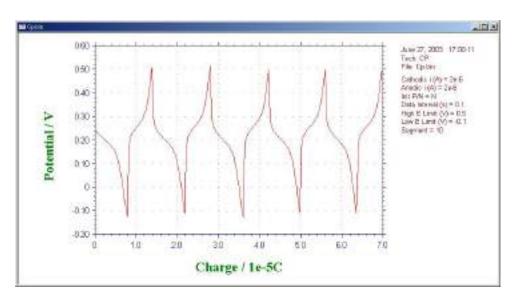

実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
ステップ順番 1 - 12:		
ステップ 電位 (V)	-10 ∼ +10	ステップ電位
ステップ時間 (s)	$0 \sim 10,000$	ステップ期間
初期電位 (V)	-10 ∼ +10	初期電位
サイクル数	$0 \sim 10,000$	サイクル数
サンプル間隔 (s)	0.0001 - 1	サンプル間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$10^{-12} \sim 0.2$	感度スケール

- 1. ステップタイムが 0.01V 以下であるならば、このステップはは無視できます。
- 2. ステップタイムはサンプル間隔より短くなる場合、このステップは無視されます。
- 3. (ステップ時間*サイクル/サンプル間隔)が64Kを超える場合、または実験後、データ転送する場合、サンプル間隔は自動的に増えます
- 4. サンプル間隔が 0.002 秒より大きい場合、データは転送され、リアルタイムに表示されます。
- 5. 初期電位、最終電位、ステップ電位の電位差は13.1V以下にして下さい。

クロノポテンショメトリーパラメータ


クロノポテンショメトリーパラメータダイアログボックスを示します。:



実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
負電流 (A)	0 ~ +2	負電流の制御
正電流 (A)	0 ∼ +2	正電流の制御
高電位リミット(V)	-10 ∼ +10	高電位リミット値
低電位リミット(V)	-10 ∼ +10	低電位リミット値
陰極時間 (sec)	$0.005 \sim 100,000$	陰極計測時間
陽極時間 (sec)	$0.005 \sim 100,000$	陽極計測時間
初期極性	Cathodic または Anodic	最初のセグメントの極性
データ保存間隔 (sec)	$0.0001 \sim 32$	データ保存間隔
セグメント数	1 ~ 1,000,000	半サイクル数
電流切替え極性	電位または時間	電流極性切替制御
補助電極信号記録	チェックまたは未チェック	サンプル間隔が 0.005 秒以上時、同時
	ラエックまたは木ケエック	に外部信号を記録する

- 1. 負電流は還元、正電流は酸化に用います。還元の間、低電位リミットに到着した場合、電流極性は自動的に正側に切り替ります。同様に酸化プロセスの間に高電位リミットに到着した場合、電流極性は自動的に負側に切り替ります。電流極性切替えの数はセグメント数に依存します。設定セグメント数に到着した場合、実験は停止します。
- 2. 初期電流極性は初期極性パラメータにより決められます。
- 3. 測定中のデータはデータ保存間隔と同じ速度で更新されます。
- 4. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、データ保存間隔も大きくなります。データが最大ポイントを超えますと、データ保存間隔は自動的に二倍になります。故に、データポイントは期待しない長い計測を超えることはありません。
- 5. セグメント数を大きくすることは可能ですが、データは最初の400セグメントのみが保存されます。測定中に広範のセグメントが表示されますが、保存はされません。
- 6. 電流極性は特定の電位または指定時間の一方で切り替ります。陰極または陽極時間設定は異なります。他方、時間優先が選択されていても、リミット電位に到着した場合、電流極性は電極を守るために逆転します。

電流ランプ・クロノポテンショメトリーパラメータ

電流ランプ - クロノポテンショメトリー パラメータダイアログボックスを表示します。

刀期電流(j)(A)	3	OK
最終電流(F)(A)	0	キャンセル
電流スキャン速度 (A√s)	1 e-01 0	ヘルプ(H)
高電位15:沙(H)(V)	1	170000
€電位以外(L)(V)	-1	
データ保存間隔(D)(sec)	0.1	

実験パラメータ、範囲、詳細は次の通りです。:

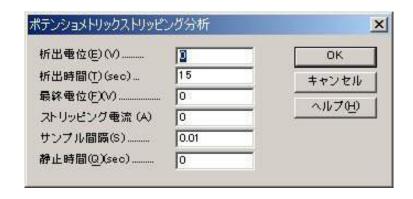
パラメータ	範囲	内容
初期電流 (A)	-2 ∼ +2	初期電流
最終電流 (A)	-2 ∼ +2	最終電流
スキャン速度 (A/s)	$1 \times 10^{-10} \sim 0.01$	電流のスキャン速度
サンプル間隔 (sec)	$0.0025 \sim 32$	サンプリング間隔
高電位リミット (V)	-10 ∼ +10	高電位リミット値
低電位リミット(V)	-10 ∼ +10	低電位リミット値
データ保存間隔	0.0001 ~ 32	データ保存間隔

- 1. 初期電流と最終電流は少なくとも 1×10^{9} A 離します。
- 2. 負電流は還元、正電流は酸化に用います。還元の間、高電位リミットまたは低電位リミットに 到着した場合、測定は停止します。
- 3. 少なくとも 10 ポイントは測定を行う上で必要です。さもなければ、電流スキャン速度を減少させるか、サンプリング間隔を減らします。
- 4. 測定中、データはデータ保存間隔と同じ速度で更新されます。
- 5. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、データ保存間隔も大きくなります。データが最大ポイントを超えますと、データ保存間隔は自動的に二倍になります。故に、データポイントはオーバーフローしません。

マルチ電流ステップパラメータ

マルチ電流ステップ パラメータダイアログボックスを表示します。

ステップ 1	- ステップ 6	ステップ 能表 (A) ロ	OK 462-014
ステップ 電流 (A) 重	ステップ 電流 (A) (D)	ステップ 能表 (A) ロ	
ステップ 2階 (b) [10	ステップ 2階 (a) (D)	ステップ時間 (i) ロ	
ステップ 記	ステップ 6	ステップ 10	_ AA796
ステップ 電流 (A) D	ステップ 後点 (3) D	ステップ 配表 (a) 10	
ステップ 網路 (A) (D	ステップ 10個 (6) (D	ステップ時間 (a) 10	
ステップ 名	25927	ステップ tt	
ステップ 電池 (40 円	25927 衛王 (A) (D	2テップ 電表 (A) D	
ステップ 中間 (4) 円	25927時間 (a) (D	ステップ時間 (a) D	
ステップ 4 ステップ 電表 40 D ステップ時間 60 D	ステップ 8 ステップ 数度 (A) 0 ステップ時間 (A) (D	- ステップ 12 ステップ 歌表 (a) 0 ステップ時間 (s) 0	画像位別の 140 日 被像位別の 1-0 への1 サイクリ級 - 「 サンクル間間は - 1002


実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
ステップ手順:1 - 12:		
ステップ電位 (A)	-0.25 ∼ +0.25	ステップ電位
ステップ時間 (sec)	$0 \sim 10,000$	ステップ期間
高電位リミット (V)	-10 ∼ +10	高電位リミット値
低電位リミット(V)	-10 ∼ +10	低電位リミット値
サイクル数	$1 \sim 10,000$	サイクル数
サンプル間隔 (sec)	$0.0001 \sim 1$	サンプリング間隔

- 1. ステップ時間が 0.001 秒以下の場合、このステップは無視されます。
- 2. ステップ時間がサンプル間隔より短い場合、このステップは無視されます。
- 3. (ステップ時間*サイクル/サンプル間隔)が128Kを超える場合、または実験後、データ転送する場合、サンプル間隔は自動的に増えます
- 4. サンプル間隔が 0.002 秒以上の場合、データは転送され、リアルタイム表示されます。
- 5. 電位が高電位リミット、低電位リミットに達しますと、測定は停止します。

ポテンショメトリックストリッピング分析パラメータ

ポテンショメトリックストリッピング分析パラメータダイアログボックスを示します。:

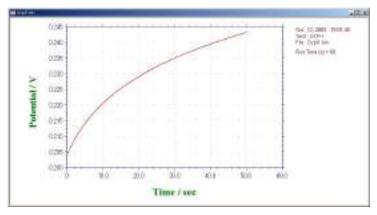
実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
析出電位 (V)	-10 ∼ +10	析出電位
析出時間 (sec)	0 ~ 100,000	析出時間
最終電位 (V)	-10 ∼ +10	最終電位 ^{注2参照}
ストリッピング電流 (A)	$0 \sim 0.25$	ストリッピング電流の制御
サンプル間隔 (sec)	$0.0001 \sim 50$	サンプリング間隔
静止時間 (sec)	0 ~ 100,000	データ採取前の静止時間

- 1. サンプル間隔が 0.002 秒以下の場合、64K データポイントが許可されています。データ密度は 測定時間 /64,000 に等しい
- 2. 最終電位に到着した場合、計測は自動的に停止します。
- 3. 制御ストリッピング電流をゼロに設定した場合、カウンター電極は実際には接続されません。
- 4. 制御ストリッピング電流が 1.0×10^{-10} A 以下の場合、計測中、電流は流れません。
- 5. 電流極性を心配する必要はありません。システムは自動的に析出電位と最終電位に応じて、電流極性を割当てます。還元の場合、電流は正となり、酸化の場合、電流は負となります。
- 6. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、データ保存間隔も大きくなります。

オーブンサーキットポテンシャル - 時間 パラメータ

オーブン回路ポテンシャル - 時間 パラメータダイアログボックスを表示します。



実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
測定時間 (sec)	$0.1 \sim 500,000$	測定時間
サンプル間隔	$0.0025 \sim 50$	サンプリング間隔
高電位リミット (V)	-10 ∼ 10	高電位リミット
定電位リミット (V)	-10 ∼ 10	低電位リミット

- 1. 高または低電位リミットに到着した時、警告が表れます。
- 2. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、データ保存間隔も大きくなります。

OCPT により測定したデータ

システムコマンド

このコマンドを使用しますと、通信ポート、電流極性、電位軸、電流軸を設定できます。 システムセットアップダイアログボックスを示します。:

次のオプションはシステムのセットアップを行います。

通信ポート

PCと機器を接続するための通信ポート選択を行います。COM 1 はマウスで使用されている場合、データリンクには COM 2 を接続して下さい。

電流極性

正電流としてカソード電流またはアノード電流を選択します。測定前にこれを設定しませんと、 実験結果(ピーク、波形)は報告されません。

ポテンシャル軸

正のポテンシャル軸を左または右に選択できます。これはボルタンメトリーまたはポーラログラフィーモードでは意味があります。

電流軸

上下のどちらかを正の電流軸に設定できます。

電源周波数

電源周波数を設定します。電源周波数の影響を受ける測定法の場合、電源周波数からの干渉を少なくするために有効です。

ウインドウズ

英語のウインドウズを使用する場合、英語を選択して下さい。中国語、日本語、韓国語を使用する場合、オリエンタルをチェックして下さい。オリエンタルウインドウは英語版に比べて文字が大きくなります。英語ウインドウズを選択しますと、テクニック選択フィールドが切詰められる事があります。オリエンタルウインドウズは英語のシステムフォントをサポートしてお

りません。例えば英語のμ表示はμとして表示されます。

データ長

デフォルトのデータ長は 128K です。データ長を長くしますと、コンピューターのリソースが消費されます。必要ない場合、データ長は長くしないことをお勧めします。長いデータ長を使用しますと、512MB, 1GMB の大きな RAM を必要としますし、システムは遅くなり、測定中に他のプログラムが動作しなくなる恐れがあります。

システムセットアップコマンドでデータ長を変更した場合、プロクラムを終了し、プログラムを再スタートしてください。この操作を行いませんと、プログラムが壊れる恐れがあります。 長いデータ長でデータを取り込み、保存する場合、短いデータ長の設定で読込んだ場合、プログラムは壊れることがあります。一旦データ長の設定を行った場合、データ長の変更は行わないで下さい。データ長の変更を行う場合、熟慮の上変更して下さい。

測定中のデータ修復

このオプションをチェックしておきますと、測定中のハードディスクに保存してあるデータを元に戻します。実験が外部干渉または中断、通信エラーにより終了しない場合、部分的なデータは回復できます。これはスキャン速度が遅い実験の場合、有効です。何時間も掛かる測定データを修復できます。

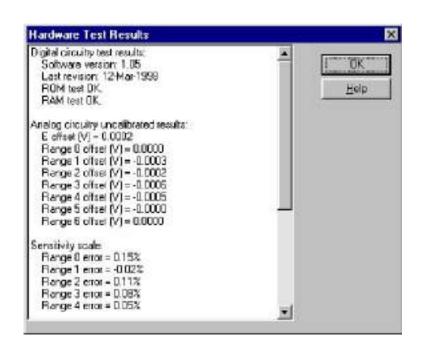
このコマンドはデフォルトでは有効ではありません。遅いスキャン走査実験を行わない場合、 または事故により実験が中断した場合、再度測定して下さい。

最後の測定データを修復したい場合、セットアップメニュー下のシステム コマンドの中の"測定中のデータ修復保存"オプションをチェックして下さい。

現在のデータ無視の警告

新たな測定を行うまたはディスクに存在するファイルを開く前、実験データが保存されていない場合、未保存のデータは無視されます。このオプションはデータが失われる前にシステムが警告を発します。

テキストファイルで保存


通常バイナリーデータファイルで保存されます。バイナリファイルには多くの情報(実験のコントロール情報)を含み、サイズも小さくなります。このオプションはバイナリーデータを保存する時、テキストファイルとして保存します。テキストファイルは他のスプレッドシート、データベース等の市販ソフトを用いて読むことができ有用です。

ADC 校正係数の削除

ADC コンバーター校正係数は器械のメモリーに保存されます。ADC 校正は出荷前に向上で行なわれています。ご自身で校正する場合、このボタンを使用してください。ADC 係数を削除後、ハードウェアーテストまたは測定を行うことにより ADC 校正が行なえます。

ハードウェアーテストコマンド

このコマンドを使用すると、システムハードウェアーをテストします。システムはROM、RAM、アナログ回路試験を行います。テスト後、システムはハードウェアーセルフテストダイアログボックスを表示します。:

デジタル回路試験結果:

装置のソフトウェアーバージョンを示します。

ROM テスト結果が示されます。

RAM テスト結果が示されます。

アナログ回路未キャリブレーション試験結果:

オフセット未キャリブレーション結果が示されます。測定中これらの結果は補償されています。 故に、ここに示されるオフセットは実験の測定エラーまたはコントロールに反映されません。 Eオフセットはポテンシャルオフセットです。

レンジ#オフセットは特定の電流測定範囲オフセットです。

これらのオフセットが 10 mV 以上の場合、エラーメッセージ "Out of range" が表れます。測定中オフセットは補償されます。実際のデータに理由もなく大きなオフセットを使用しない限り、問題にはならないでしょう。

感度スケール

電流一電圧コンバータの感度スケールには9つの範囲があります。ダミーセル抵抗の固定値により、試験は非常に低、高範囲で相対的に大きくなるようです。レンジ 5、6 test の結果はエラーがあるレベルを超えた場合のみ報告されます。これは必ずしも実際の測定エラーに関係しません。この試験は主にアンプと感度スイッチングをチェックします。測定エラーに関係する場合、正確な抵抗でサイクリックボルタンメトリーを行いチェックしてください。

ゲイン

シグナルゲイン設定には8レンジあります。エラーが1%を超えると、警告メッセージが表れます。

ガルバノスタットテスト

ガルバノスタット / ポテンショスタットの切替えが試験されます。ガルバノスタットの電流制御もまた試験されます。何か問題が検出されますと、エラーメッセージが表れます。

アナログ試験概要

アナログ回路の試験結果は要約されます。アナログ回路試験のメッセージが OK ならば、エラーは検出されません。さもなければ、エラーメッセージが表れます。アナログ/デジタルコンバーターによるエラーが表れる場合、その結果も報告されます。

アナログ試験エラーがあると、何回かテストを繰返し、エラー内容が同一であるかどうか確認して下さい。エラー内容を記録し、販売代理店にご連絡下さい。

測定コマンド

このコマンドにより計測を行います

このコマンドは静止時間、析出時間、前処理を省略するにも使用されます。このコマンドを使用し、静止時間、析出時間、前処理時間中に次のステップに行くことができます。

測定前、システムはデータリンクをチェックします。リンクに失敗すとコマンドは終了し、 エラーメッセージが表れます。

ソフトは実験パラメータの組み合せをチェックします。組み合せが適切でない場合、コマンドは終了し、エラーメッセージが表れます。

ほとんどの場合、リアルタイム表示が可能です。しかし、データ取り込み速度がデータ転送速度より早い場合、データは計測後、直に表示されます。測定停止コマンドを押して測定を中止できます。測定中のグラフィックをクリップボードにコピーできます。

このコマンドはツールバーボタンがあります:

待機/再開コマンド

測定の一時中止、再開を行うためのコマンドです。

このコマンドタイムベースの計測、例えば CA, CC, BE, i-t, DPA, DDPA, TPA, CP, PSA 等には使用できません。

このコマンドはツールバーボタンがあります:

測定停止コマンド

測定を停止するために使用するコマンドです。 測定中、繰り返し測定、マクロコマンドを停止するために使用できます。

このコマンドはツールバーボタンがあります:

スキャン反転コマンド

サイクリックボルタンメトリー実験中にポテンシャルのスキャンを反転するためのコマンドです。

このコマンドを押しますと、毎回スィープセグメントは反転します。

このコマンドを測定中に使用しますと、データ解析の幾つか、例えばピーク検索等は働きません。

このコマンドは他のテクニックでは機能しません。

このコマンドはツールバーボタンがあります:

測定状況コマンド

このコマンドは計測に関連する設定、例えば iR 補償、スムージング、パージ、攪拌、水銀の前滴下、各計測後自動スムージングを有効、無効を変更、をチェックするために使用します。 下記図は測定状況コマンドのダイアログボックスです:

このオプションは計測に関連する状況を変更するオプションです。:

測定前のキャリブレーション

このボックスをチェックしますと、ポテンシャル電流オフセットは測定、補償されます。このオプションを使用不可にしますと、各測定前の時間遅延が減少します。

測定前の接続チェック

このボックスをチェックしますと、カウンター、参照電極の接続がチェックされます。電極の一つが接続されていないと、警告メッセージが表れます。このことはポテンショスタットのオープンループによる作用電極の損傷を防ぎます。警告が表れたら、接続のチェックを行って下さい。このオプションを使用不可にしますと、実際の計測前の時間遅延が減少します。

オープンサーキットに初期電位を使用

このボックスをチェッしますと、システムは測定前にオープンサーキットポテンシャルをテストし、オープンサーキットポテンシャルを初期電位として使用します。

外部トリガー測定

このボックスがチェックされますと、機器の背面パネルのセルコントロールポートの外部トリガー信号によりスタートします。ヒン配列についてはユーザーマニュアルを参照して下さい。

次の測定のための iR 補償

このボックスをチェックしますと、次の測定の iR 補償が使用可になります。自動補償が設定され、iR 補償試験が行われない、または感度スケールが変更された場合、iR 補償は使用できません。TAFEL, BE, IMP, CP, PSA のようなテクニックでは iR 補償はできません。コントロールメニューの iR 補償からオン、オフします。

測定後のスムージング

このボックスをチェックしますと、測定後自動スムージングが使用可能です。TAFEL, BE, IMP のようなテクニックはスムージングができません。このオプションはデータ処理メニューのスムージングコマンドからオン、オフできます。

2種類のデジタルスムージングが利用できます。: 最小二乗法、フーリエ変換スムージングです。スムージングのモードを設定する場合、データ処理メニューのスムージングコマンドを使用します。

測定の間のパージ

この項目をチェックしますと測定の間のパージが行えます。この項目はコントロールメニューのパージコマンドからオン、オフできます。

測定の間の攪拌

この項目をチェックしますと、測定の間の攪拌が行えます。この項目はコントロールメニューの攪拌コマンドからオン、オフできます。

析出中の回転

この項目をチェックすると、ストリッピング分析での析出中回転します。この項目はコントロールメニューの回転ディスク電極コマンドからオンオフできます。

静止時間中の回転

この項目をチェックしますと、静止時間中回転します。この項目はコントロールメニューの 回転ディスク電極コマンドからオンオフできます。

測定中の回転

この項目をチェックしますと、測定中回転します。この項目はコントロールメニューの回転 ディスク電極コマンドからオンオフできます。

測定の間の回転

この項目をチェックしますと、測定の間に回転します。この項目はコントロールメニューの 回転ディスク電極コマンドからオンオフできます。

回転速度 (rpm)

このパラメータは回転ディスク電極の速度を設定します。パラメータ範囲は0~10,000です。

測定前の SMDE 滴下

パラメータのデフォルト値は1です。通常システムは静止水銀滴下電極 (SMDE) が使用される時、測定前に新しい滴を形成するために滴下 / ノックを組み合せます。このデフォルト条件を変更できます。パラメータ範囲は $0\sim 20$ です。前滴下は0に設定されている場合、次の測定には前の測定に使用された滴下条件が使用されます。SMDE の場合、キャピラリーに気泡が付着し、接触不良が起ることがあるで、前滴下は1 滴以上が有効です。

このオプションはコントロールメニューのセルコマンドで変更できます。

レベルでの測定中断

電流または電荷が特定の値に達しますと、実験は自動的に停止します。電極は過電流から保護されます。これを選択しますせんと、測定は最後まで行われます。

静止時間中の電流表示

静止時間中の電流を数値またはグラフにて表示します。感度スケールは電流を読込むために 自動的に切替れます。これを選択していませんと、電流は表示されず、感度は実験に使用した 値と同じになります。

静止時間中断

電流または電荷が特定の値に達しますと、データサンプリング自動的に停止する前に 静止時間を中断します。これを選択しませんと、測定は最後まで行われます。

静止時間 - 電流値制御機能の操作

静止時間中の電流表示

数値またはグラフ表示にて静止時間の間の電流を表示します。感度スケールは電流を最適に読込むために自動的に切替られます。NOを選択しますと、電流は表示されず、感度は測定中同じです。

この機能は静止時間中に任意の電流値に達した時に測定が開始される機能です。

操作手順

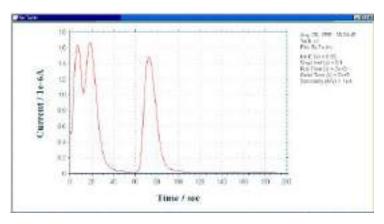
コントロールメニューの測定状況を開きます。

画面中央下の「静止時間中の電流表示」を「グラフ」にします。

画面右下「静止時間中止」の設定

「No |:変数設定のところで指定した静止時間が終了すると測定が開始されます。

「電流> |: 入力 Box で指定した電流値を超えると測定が開始されます。


「電流< |: 入力 Box で指定した電流値以下になると測定が開始されます。

OKをクリックします。この機能に関します設定は以上です。

測定変数での静止時間との優先順位について

測定変数で決定される静止時間と本機能によって制限される時間とではより短い方が優先されます。本機能を使用する場合は測定変数での静止時間を長めに入力するようにしてください。

繰り返し測定コマンド

一連の計測を行うためのコマンドです。

繰り返し測定の間、システムはデータリンクをチェックします。リンクが失敗すると、コマンドは終了し、エラーメッセージが表れます。

ソフトは実験パラメータの組み合せをチェックします。組み合せが適切でない場合、コマンドは終了し、エラーメッセージが表れます。

下記図は繰り返し測定コマンドのダイアログボックスです:

次のオプションは繰返し測定のパラメータを定義します。:

測定数

測定数を入力する。パラメータ範囲:1~9,999.

ベースファイル名

ベースファイル名を入力します。最大 5 文字まで入力できます。測定後、データは保存されます。測定数はベースファイル名に添付されます。例えば、ファイル名 N、N は $1\sim999$ 測定数です。ベースファイル名が指定されていない場合、警告が表れます。システムはデーを保存せずに測定します。

測定間隔

このパラメータは連続した測定間の遅延時間です。パラメータ範囲は $0 \sim 32,767$ です。各測定が利用できる前にプロンプットする場合、このパラメータは有効ではありません。

各測定前のプロンプット

マニュアルがチェックされると、プロンプットは各測定(一回目の測定を除く)前に表れます。 システムは応答するまで待機します。

外部トリガーが選択されますと、機器は外部信号の待機状態になります。外部トリガーが active low で、機器の背面パネルのピン 13 に接続します。

マニュアルまたは外部トリガーが選択されますと、測定間の時間間隔には効果がありません。.

実行時のデータ平均

この項目がチェックされますと、繰り返し測定のデータは平均化され、ファイル名 0 として保存されます。

繰返し測定の機能

繰返し測定を行う場合のデータを一連のテキスト データとして表示して欲しいとの要望により、ソフト ウェアーの変更を行ないました

ソフトウェアーを立ち上げコントロールファイルを マウスでクリックしますと、下記のメニューが表示さ れます。

この時、繰返し測定を選択しますと、下記のダイアログが開きます。

測定数、測定の時間間隔、外部トリガー、マニュアルにて測定を行うかを選択します。結果レポートファイルとしてピーク波形、データ形式を選択します。そして、データの保存場所を設定します。

データ形式の選択にはオリジナルデータ、半微分、 微分データの選択が行なえます。通常オリジナルを選 択して下さい。定量性を向上させるためには微分、半 微分処理を行ないますと正確なピーク電位が検索でき ます。

結果レポートファイルを作成する場合、有効をマウスでクリックして下さい。

ピーク波形の選択としては、デフォルト、ガウス波形、拡散波形、シグモイド波形の選択が行なえます。CV, LSV の場合 Diffuse, または DPV,SWV, ACV, LSSV の場合、ガウス波形、微小電極を用いた CV, NPV の場合等はシグモイド波形を選択します。

データの保存場所を設定するために、ブラウズボタンをクリックし、データを保存するディレトリーを指定します。

下記のようなデータが得られます。

ディレクトリー	日付	時刻	電位	電流	面積	電位	電流	面積	
C:\My Documents\wu\wc0.bin	June 12, 2006	11:24:00	Ep=0.284V	ip = -5.684e-007A	Ah = -4.938e-007C	Ep=0.137V	ip = 1.009e-006A	Ah = 9.807e-007C	
C:\My Documents\wu\wc1.bin	June 12, 2006	11:24:24	Ep=0.284V	ip = -6.233e-007A	Ah = -5.158e-007C	Ep=0.135V	ip = 9.909e-007A	Ah = 9.919e-007C	
C:\My Documents\wu\wc2.bin	June 12, 2006	11:24:48	Ep=0.290V	ip = -6.153e-007A	Ah = -5.615e-007C	Ep=0.129V	ip = 9.823e-007A	Ah = 1.051e-006C	
C:\My Documents\wu\wc3.bin	June 12, 2006	11:25:11	Ep=0.290V	ip = -6.185e-007A	Ah = -5.633e-007C	Ep = 0.132V	ip = 9.986e-007A	Ah = 1.040e-006C	
C:\My Documents\wu\wc4.bin	June 12, 2006	11:25:35	Ep=0.287V	ip = -6.399e-007A	Ah = -5.587e-007C	Ep=0.129V	ip = 9.810e-007A	Ah = 1.048e-006C	
C:\My Documents\wu\wc5 hin	June 12, 2006	11.25.59	$E_{\rm D} = 0.292 \rm{V}$	in6 119e-007 A	Δh5 677e-007C	$E_{\rm D} = 0.129 \rm{V}$	in - 9.822e-007 A	$\Delta h = 1.055e_{-}006C$	

注意点

マニュアルを選択し、ブラウズにて保存するディレクトリーを指定します。そして、6回の測定を行なうようスタートしますと、繰返し測定は1回のみ行ないます。

マニュアルを選択し、ブラウズにて保存するディレクトリーを指定しない場合、6回の測定を行なうようスタートします。繰返し測定は6回測定を行いますが、最後のデータのみ保存します。

外部トリガーを選択し、ブラウズにて保存するディレクトリーを指定します。そして、6回の測定を行なうようスタートしますと、繰返し測定は1回のみ行ないます。

外部トリガーを選択し、ブラウズにて保存するディレクトリーを指定しない場合、6回の測定を行なうようスタートします。繰返し測定は6回測定を行いますが、最後のデータのみ保存します。

マルチプレクサーコマンド

マルチプレクサーを用いて一連の計測を行うためのコマンドです。必要なハードウェアーは モデル 684 マルチプレクサーです。モデル 684 の最低チャンネルは 8 です。チャンネル数は 8 の倍数、x16, 24, x32・・・となり、最大 64 チャンネルまで用意しています。

マルチプレクサーの1電極当たりのケーブルは4本(作用、センス、参照、カウンター電極) から構成されています。最大64セルまで接続でき、自動計測が行えます。

下記図は繰り返し測定コマンドのダイアログボックスです:

次のオプションは繰返し測定のパラメータを定義します。:

チャンネルの選択

必要なチャンネルをクリックします。クリックされていないチャンネルは働きません。モデル 684 のチャンネル数を超える場合、入力パラメータは無視されます。

各測定前にプロンプット

マニュアルがチェックされると、プロンプットは各測定(一回目の測定を除く)前に表れます。 システムは応答するまで待機します。

外部トリガーが選択されますと、機器は外部信号の待機状態になります。外部トリガーが active low で、機器の背面パネルのピン 13 に接続します。

ベースファイル名

ベースファイル名を入力します。最大 5 文字まで入力できます。測定後、データは保存されます。測定数はベースファイル名に添付されます。例えば、ファイル名 N、N は $1\sim99,999$ 測定数です。ベースファイル名が指定されていない場合、警告が表れます。システムはデーを保存せずに測定します。

チャンネル設定

任意のチャンネルを設定できます。ダイアログボックスを終了し、特定のチャンネルの測定 を実行して下さい。

実行

このボタンを押しますと、選択したチャンネルの測定を開始します。ベースファイル名を決めておけば、ファイルは自動的にベースファイル名 + チャンネル .bin として保存されます。例えば、ベースファイル名を TEST とし、モデル 684 のチャンネルを 3、8、23、58 を選択し、測定を行います。保存ファイルは TEST3,bin, TEST8.bin, TEST58.bin として保存されいます。ベースファイル名と同じ名前が存在する場合、書込み禁止が表示されます。測定し条件はコマンド実行前に設定して下さい。

マルチプレクサー関連マクロコマンド

マルチプレクサーには2つのマクロコマンドがあります。

1つは "mch:##" 各チャンネルを設定できます。

他のマクロコマンドは "mchn" は For.......Next loop で使用されます。For......Next loop を使用することにより、"mchn"で特定のチャンネルをスキップして測定します。

モデル 684 を用いた測定

マクロコマンド

指定した順序で一連のコマンドを実行するコマンドです。測定を自動的に行う場合、大変有効です。下図はマクロコマンドのダイアログボックスです:

次のオプションはマクロコマンドを編集、読込み、保存、実行できます:

読込み

以前マクロコマンドでディスクに保存したファイルを読み込むことができます。 システムで開くダイアログボックスを表示し、ファイルを選択します。

保存

マクロコマンドで編集したディスクファイルを読み込むことができます。後で元に戻せます。

システムは名前を付けて保存ダイアログボックスを表示し、ファイルに名前を付けることができます。

マクロ実行

このボタンを押すと、マクロコマンドを実行します。実行する前に、システムはコマンドとパラメータの有効性をチェックします。エラーが検出された場合、システムはマクロコマンドを終了し、警告メッセージが発せられます。

マクロコマンド編集

編集ボックスのコマンドを入力します。各コマンドは1行とします。このコマンドが有効でない場合、スペースは無視されます。コマンドの次にパラメータが必要とする場合、コマンドとパラメータを分離するためにコロン":"または等号"="はコンマとパラメータを分けるために使用されます。

コマンド機能の説明:

コマンド	パラメータ	説明
tech	string	電気化学テクニックの選択
run		測定開始
		データをディスクファイルに保存; Nextloop の場合、ファイル名は5文
save	string	•
		字の入力のみとなります。ループ番号 (1-999) がファイル名に付加されます。
	1 000	у -
for	1 - 999	next ループの場合、1層のみ許可されます。
next	1 22 000	fornext ループの場合
delay	1 - 32,000	コマンド間の遅れ
purge	1 - 32,000	任意の時間のパージ
stir	1 - 32,000	任意の時間の攪拌
cellon		測定の間 cell on
celloff		測定の間 cell off
rdeon		RDE オン
rdeoff		RDE 77
mch	1 ~ 64	マルチプレクサーのチャンネルの選択
machn		Nextloop を使用した場合のマルチプレクサーのチャンネルの選択
efincr	-1 ~ 1	fornext マクロコマンドの最終電位 E の増分 fornext ループ後、ゼロに
einici	-1 1	リセットされます。
		fornext マクロコマンドの高電位 E の増分 fornext ループ後、ゼロにリ
ehincr	-1 ~ 1	セットされます。
		fornext マクロコマンドの低電位 E の増分 fornext ループ後、ゼロにリ
elincr	-1 ~ 1	Iornext マクロコマントの似电位 E の 音力 Iornext ルーノ後、ゼロにリ
		セットされます。
ei	-10 ∼ +10	初期電位
eh	-10 ∼ +10	CV, CA, CP の高電位リミット
el	-10 ∼ +10	CV, CA, CP の低電位リミッ ト
ef	-10 ∼ +10	スィープテクニックと PSA の最終電位
	10 10	オープンサーキットポテンシャルを初期電位と使用します。初期電位が入
eio	-10 ∼ 10	力されますと、このフラグはオフになります。
		オープンサーキットポテンシャルと初期電位の合計を使用します。新たな
eioei	-10 ∼ 10	
		初期電位が入力されると、このフラグはオフ。 オープンサーキットポテンシャルと最終電位の合計を使用します。新たな
leioef	-10 ∼ 10	オーノンガーイットホテンジャルと取終単位の合計を使用します。 新にな
		最終電位が入力されると、このフラグはオフ。
	1 . 1	fornext マクロコマンドの初期電位 E の増分 fornext ループ後、ゼロに
eiincr	-1 ~ 1	リセットされます。
e2	-10 ∼ +10	第二電極の電位
e2on		第二電極オン
e2off		第二電極オフ
v	1e-6 ~ 2e4	スキャン速度
incre	.01 ~ .05	電位増加分
pn		CV, CA での初期電位方向切り替え; CP での初期電流極性
cl	1 ~ 10,000	CV、CPのセグメント数
si	.001 ~ .064	BE, CP のサンプル間隔またはデータ保存間隔
sens	1e-12 ∼ .1	感度
sens2	1e-12 ~ .1	第二電極の感度
autosens		遅い CV または LSV の自動感度
qt	0 ~ 100,000	測定前の静止時間
ht	$0 \sim 100,000$	TAFELの最終電位保持時間
pw	1e-4 ~ 1e3	パルス幅
amp	.001 ~ .5	交流またはパルス振幅
sw	$1e-4 \sim 50$	サンプリング幅
st	$.001 \sim 5e5$	i-t 曲線のトータルサンプル時間
prod	.01 ~ 50	サンプリング期間
freq	$1 \sim 100,000$	周波数
iratio	0 ~ 100	BE の最終電流比
bepe	-10 ~ +10	BE の前電解電位
loche	-10 -10	DD Y7 門 电冲

	100,000	DD 0. 学录如叶田
bept	0 ~ 100,000	BEの前電解時間
rpm	0 ~ 10,000	RDE 回転速度
1	0 ~ 0.25	PSAの制御電流
ic	0 ~ 0.25	CP の陰 (カソード) 電流
ia	0 ~ 0.25	CP の陽 (アノード) 電流
tc	$0.05 \sim 100,000$	CP の陰 (カソード) 時間
ta	$0.05 \sim 100,000$	CP の陽 (アノード) 時間
priot		CPでの時間優先
prioe		CPでの電位優先
fl	$.0001 \sim 10,000$	IMPの低周波数
fh	.001 ~ 100,000	IMP の高周波数
mt	1 - 1,024	10Hz 以上の時の IMP の測定時間
cl1	1 - 4,096	IMP の周波数が $1 \sim 10$ Hz の時、測定サイクル
c12	1 ~ 4,096	IMP の周波数が $0.1\sim 1$ Hz の時、測定サイクル
cl3	1 ~ 256	IMP の周波数が $0.01 \sim 1$ Hz の時、測定サイクル
cl4	1 ~ 256	IMP の周波数が 0.001 ~ 0.01 の時、測定サイクル
cl5	1 ~ 16	IMP の周波数が 0.0001 ~ 0.001 の時、測定サイクル
	1 - 10	ストリッピングモードオン
smodeon		ストリッピングモードオフ
smodeoff	1	
depeon		ストリッピングモードでの析出電位をオン
depeoff	1	ストリッピングモードでの析出電位をオフ
depe	-10 ∼ +10	析出電位
dept	1 ~ 100,000	析出時間
quieteon		ストリッピングモードで静止電位オン
quieteoff		ストリッピングモードで静止電位オフ
quiete	-10 ∼ 10	ストリッピングモードでの静止電位
pcon		前処理をオン
pcoff		前処理をオフ
initeon		測定後初期電位に戻る
initeoff		測定後最終電位に保持
pcon		前処理をオン
pcoff		前処理をオフ
pce1	-10 ∼ +10	前処理の第一ステージの電位
pce2	-10 ~ +10	前処理の第二ステージの電位
pce3	-10 ~ +10	前処理の第三ステージの電位
pct1	0 ~ 6,400	前処理の第一ステージの時間
		前処理の第二ステージの時間
pct2	0 ~ 6,400	前処理の第三ステージの時間
pct3	0 ~ 6,400	
noabort		測定の間実験を中断しない
abortov		電流がオーバーフローの場合、実験を中断
abortigt	0~2	電流が入力した値より大きい場合、実験を中断
abortilt	0~2	電流が入力した値より小さい場合、実験を中断
abortq	$0 \sim 100,000$	チャージが入力した値より大きい場合、実験を中断
abort10s	0~1	信号変化が10秒入力した値以下の場合、実験を中断
abortchgt	$0 \sim 3,600$	時間間隔を変えるために abort10s を修正する
		モデル 1000 シリーズの測定を行う場合、連続的に測定するためのコマンド
sequential		です。run コマンドの前の行に記載する
		モデル 1000 シリーズの測定を行う場合、同時測定を行うためのコマンドで
simultaneous		
		す。run コマンドの前の行に記載する
ei1	-10 ∼ +10	SSF での初期電位 1
ei2	-10 ∼ +10	SSF での初期電位 2
ei3	-10 ∼ +10	SSF での初期電位 3
ei4	-10 ∼ +10	SSF での初期電位 4
ei5	-10 ∼ +10	SSF での初期電位 5
ei6	-10 ~ +10	SSF での初期電位 6
ef1	-10 ~ +10	SSF での最終電位 1
ef2	-10 ~ +10	SSFでの最終電位 2
ef3	-10 ~ +10 -10 ~ +10	SSFでの最終電位3
	-10 ~ +10 -10 ~ +10	SSF Cの最終電位 5 SSF での最終電位 4
ef4		
ef5	-10 ~ +10	SSF での最終電位 5
ef6	-10 ~ +10	SSF での最終電位 6

v1	1e-4 ∼ 10	SSF でのスキャン速度 1
v2	1e-4 ∼ 10	SSF でのスキャン速度 2
v3	1e-4 ∼ 10	SSF でのスキャン速度 3
v4	1e-4 ∼ 10	SSF でのスキャン速度 4
v5	1e-4 ∼ 10	SSF でのスキャン速度 5
v6	1e-4 ∼ 10	SSF でのスキャン速度 6
es1	-10 ∼ +10	SSF と STEP でのステップ電位 1
es2	-10 ∼ +10	SSF と STEP でのステップ電位 2
es3	-10 ∼ +10	SSF と STEP でのステップ電位 3
es4	-10 ∼ +10	SSF と STEP でのステップ電位 4
es5	-10 ∼ +10	SSF と STEP でのステップ電位 5
es6	-10 ∼ +10	SSF と STEP でのステップ電位 6
st1	0 ~ 10,000	STEP でのステップ時間 1
st2	0 ~ 10,000	STEP でのステップ時間 2
st3	0 ~ 10,000	STEP でのステップ時間 3
st4	0 ~ 10,000	STEP でのステップ時間 4
st5	0 ~ 10,000	STEP でのステップ時間 5
st6	0 ~ 10,000	STEP でのステップ時間 6

各種テクニックのコマンドリストを示します。コマンドとパラメータはモデルにより異なることがあります。ヘルプファイルまたはユーザーマニュアルをご確認下さい。

CV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	cv	サイクリックボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
eh	-10 ∼ +10	高電位リミット (V)
el	-10 ∼ +10	低電位リミット (V)
pn	pまたはn	初期電位方向切り替え
V	1e-6 ∼ 2e4	スキャン速度 (V/s)
cl	1 ~ 10,000	セグメント数
si	$0.001 \sim 0.064$	サンプル間隔 (V)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
autosens		0.01V/s 以下のスキャン速度の場合、自動感度

LSV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	lsv/lssv	リニアースィープボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
V	1e-6 ∼ 2e4	スキャン速度 (V/s)
si	$0.001 \sim 0.064$	サンプル間隔またはデータ保存間隔
qt	0~100,000	測定前の静止時間
sens	1e-12 ∼ 0.1	感度 (A/V)
autosens		0.01V/s 以下のスキャン速度の場合、自動感度

SCV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	scv/scp/scsv	階段状ボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
sw	$0.0001 \sim 50$	サンプリング幅 (V)
prod	$0.01 \sim 50$	ステップ期間
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	$1e-12 \sim 0.1$	感度 (A/V)
autosens		0.01V/s 以下のスキャン速度の場合、自動感度

Tafel で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	tafel	ターフェルプロットの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
cl	$1 \sim 2$	セグメント数
ht	$0 \sim 100,000$	TAFEL の最終電位保持時間 (s)
V	$1\text{e-}6 \sim 0.1$	スキャン速度 (V/s)
qt	$0 \sim 100,\!000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
autosens		0.01V/s 以下のスキャン速度の場合、自動感度

CA で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	ca	クロノアンペロメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
eh	-10 ∼ +10	高電位リミット (V)
el	-10 ∼ +10	低電位リミット (V)
pn	pまたはn	初期電位方向切り替え
cl	1 ~ 320	ステップ数
pw	$0.0001 \sim 1,000$	パルス幅
si	$2e-6 \sim 10$	サンプル間隔 (V)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

CC で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	сс	クロノクーロメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
cl	1 ~ 320	ステップ数
pw	$0.0001 \sim 1,000$	パルス幅
si	$2e-6 \sim 10$	サンプル間隔 (V)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

DPV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	dpv/dpp/dpsv	微分パルスボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
amp	$0.001 \sim 0.5$	パルス振幅 (V)
pw	$0.001 \sim 10$	パルス幅 (s)
sw	$0.0001 \sim 10$	サンプリング幅 (V)
prod	$0.01 \sim 50$	ステップ期間
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	$1e-12 \sim 0.1$	感度 (A/V)

NPV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	npv/npp/npsv	ノーマルパルスボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位增加分 (V)
pw	$0.001 \sim 10$	パルス幅 (s)
sw	$0.0001 \sim 10$	サンプリング幅 (V)
prod	0.01 ~ 50	ステップ期間
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

DNPV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	dnpv/dnpp/dnpsv	微分ノーマルパルスボルタンメトリーの選択
ei	-10 ~ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
amp	$0.001 \sim 0.5$	パルス振幅 (V)
pw1	$0.001 \sim 10$	一次パルス幅 (s)
pw2	$0.001 \sim 10$	二次パルス幅 (s)
sw	$0.001 \sim 5$	サンプリング幅 (V)
prod	$0.05 \sim 50$	ステップ期間 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	$1e-12 \sim 0.1$	感度 (A/V)

SWV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	SWV	矩形波ボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
amp	$0.001 \sim 0.5$	矩形波振幅 (V)
pw1	$0.001 \sim 10$	一次パルス幅 (s)
pw2		二次パルス幅 (s)
sw	$0.001 \sim 5$	サンプリング幅 (V)
freq	$1 \sim 100,000$	矩形波周波数 (Hz)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	$1e-12 \sim 0.1$	感度 (A/V)

ACV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	acv/acp/acsv	交流ボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
amp	$0.001 \sim 0.4$	交流波振幅 (V)
freq	1 ~ 100,000	交流波周波数 (Hz)
prod	1 ~ 65	ステップ期間 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
autosens		自動感度

SHACV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	shacv/shacp	第二高調波交流ボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位增加分 (V)
amp	$0.001 \sim 0.4$	交流波振幅 (V)
freq	$1 \sim 100,000$	交流波周波数 (Hz)
prod	1 ~ 65	ステップ期間 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

i-t で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	i-t	アンペロメトリー i-t 曲線の選択
ei	-10 ∼ +10	初期電位 (V)
si	$2\text{e-}6\sim50$	サンプル間隔またはデータ保存間隔
st	$0.001 \sim 5e5$	i-t 曲線のトータルサンプル時間
qt	$0 \sim 100,000$	測定前の静止時間
sens	1e-12 ∼ 0.1	感度 (A/V)

BE で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	be	バルク電気分解の選択
ei	-10 ∼ +10	初期電位 (V)
iratio	0 ~ 100	BE の最終電流比 (%)
si	$2e-6 \sim 50$	データ表示とデータ保存間隔 (s)
bepe	-10 ∼ +10	BEの前電解電位
bept	0 ~ 100,000	BEの前電解時間

HMV で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	hmv	ハイドロダイナミック変調ボルタンメトリーの選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.05$	電位増加分 (V)
rpm	$0 \sim 10,000$	回転速度 (rpm)
freq	1 ~ 5	変調周波数 (Hz)
modamp	$1 \sim 3,600$	変調振幅
cl	1 ~ 10	ステップ数
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

SSF で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	ssf	sweep-step 機能の選択
ei	-10 ∼ +10	初期電位 (V)
si	$0.001 \sim 0.05$	スィープサンプル間隔 (V)
st	0.001 ~ 1	ステップサンプル間隔 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
ei1	-10 ∼ +10	SSF での初期電位 1:sweep
ef1	-10 ∼ +10	SSF での最終電位 1:sweep
v1	1e-4 ∼ 10	SSF でのスキャン速度 1:sweep
es1	-10 ∼ +10	SSFと STEP でのステップ電位 1:step
st1	0 ~ 10,000	STEP でのステップ時間 1:step
ei2	-10 ∼ +10	SSF での初期電位 2:sweep
ef2	-10 ∼ +10	SSF での最終電位 2:sweep
v2	1e-4 ∼ 10	SSF でのスキャン速度 2:sweep
es2	-10 ∼ +10	SSF と STEP でのステップ電位 2:step
st2	0 ~ 10,000	STEP でのステップ時間 2:step
ei3	-10 ∼ +10	SSF での初期電位 3:sweep
ef3	-10 ∼ +10	SSF での最終電位 3:sweep
v3	1e-4 ∼ 10	SSF でのスキャン速度 3:sweep
es3	-10 ∼ +10	SSF と STEP でのステップ電位 3:step
st3	0 ~ 10,000	STEP でのステップ時間 3:step
ei4	-10 ∼ +10	SSF での初期電位 4:sweep
ef4	-10 ∼ +10	SSF での最終電位 4:sweep
es4	-10 ∼ +10	SSFと STEP でのステップ電位 4:sweep
v4	1e-4 ∼ 10	SSF でのスキャン速度 4:step
st4	0 ~ 10,000	STEP でのステップ時間 4:step
ei5	-10 ∼ +10	SSF での初期電位 5:sweep
ef5	-10 ∼ +10	SSF での最終電位 5:sweep
v5	1e-4 ∼ 10	SSF でのスキャン速度 5:sweep
es5	-10 ∼ +10	SSF と STEP でのステップ電位 5:step
st5	0 ~ 10,000	STEP でのステップ時間 5:step
ei6	-10 ∼ +10	SSF での初期電位 6:sweep
ef6	-10 ∼ +10	SSF での最終電位 6 :sweep
v6	1e-4 ∼ 10	SSF でのスキャン速度 6:sweep
es6	-10 ∼ +10	SSF と STEP でのステップ電位 6:step
st6	0 ~ 10,000	STEP でのステップ時間 6:step

STEP で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	step	sweep-step 機能の選択
ei	-10 ∼ +10	初期電位 (V)
cl	$1 \sim 1,000$	サイクル数
si	$0.001 \sim 1$	スィープサンプル間隔 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
es1	-10 ∼ +10	STEP でのステップ電位 1
st1	0 ~ 10,000	STEP でのステップ時間 1
es2	-10 ∼ +10	STEP でのステップ電位 2
st2	0 ~ 10,000	STEP でのステップ時間 2
es3	-10 ∼ +10	STEP でのステップ電位 3
st3	0 ~ 10,000	STEP でのステップ時間 3
es4	-10 ∼ +10	STEP でのステップ電位 4
st4	0 ~ 10,000	STEP でのステップ時間 4
es5	-10 ∼ +10	STEP でのステップ電位 5
st5	0 ~ 10,000	STEP でのステップ時間 5
es6	-10 ∼ +10	STEP でのステップ電位 6
st6	0 ~ 10,000	STEP でのステップ時間 6

IMP で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	imp	交流インピーダンスの選択
ei	-10 ∼ +10	初期電位 (V)
fl	$0.0001 \sim 10,000$	IMP の低周波数
fh	$0.001 \sim 100,000$	IMP の高周波数
amp	$0.001 \sim 0.4$	交流波振幅 (V)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)
cl1	1 - 4,096	IMP の周波数が $1 \sim 10$ Hz の時、測定サイクル
cl2	1 ~ 4,096	IMP の周波数が 0.1 ~ 1 Hz の時、測定サイクル
c13	1 ~ 256	IMP の周波数が 0.01 ~ 1Hz の時、測定サイクル
cl4	1 ~ 256	IMP の周波数が $0.001 \sim 0.01$ の時、測定サイクル
cl5	1 ~ 16	IMP の周波数が $0.0001 \sim 0.001$ の時、測定サイクル
impft		FT mode above 100 Hz
impsf		single frequency mode above 100 Hz
impautosens		自動感度
impsene1		(manual sensitivity when freq = 10K-100KHz
impsene2		manual sensitivity when freq = 1K-10KHz
impsene3		manual sensitivity when freq = 100-1KHz
impsene4		manual sensitivity when freq = 10-100Hz
impsene5		manual sensitivity when freq = 1-10Hz
impsene6		manual sensitivity when freq = 0.1-1Hz
impsene7		manual sensitivity when freq = 0.01-0.1Hz
impsene8		manual sensitivity when freq = 0.001-0.01Hz
impsene9		manual sensitivity when freq = 0.0001-0.001Hz

IMPT で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	impt	インピーダンスータイムの選択
ei	-10 ∼ +10	初期電位 (V)
amp	$0.001 \sim 0.25$	交流波振幅 (V)
freq	$0.0001 \sim 100,000$	周波数 (Hz)
si	$5 \sim 20,000$	サンプル間隔 (s)
st	$100 \sim 500,000$	測定時間 (s)
cl1	1 - 100	周波数が 10 Hz 以下の時、繰り返しサイクル
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

IMPE で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	impe	インピーダンスー電位の選択
ei	-10 ∼ +10	初期電位 (V)
ef	-10 ∼ +10	最終電位 (V)
incre	$0.001 \sim 0.25$	電位増加分 (V)
amp	$0.001 \sim 0.25$	交流波振幅 (V)
freq	$0.0001 \sim 100,000$	周波数 (Hz)
cl1	1 - 100	周波数が 10 Hz 以下の時、繰り返しサイクル
qt	$0 \sim 100,000$	測定前の静止時間 (s)
sens	1e-12 ∼ 0.1	感度 (A/V)

CP で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	ср	クロノポテンショメトリーの選択
ic	$0 \sim 0.25$	CP の陰 (カソード) 電流
ia	$0 \sim 0.25$	CP の陽 (アノード) 電流
eh	-10 ∼ +10	高電位リミット (V)
el	-10 ∼ +10	低電位リミット (V)
tc	$0.05 \sim 100,000$	CP の陰 (カソード) 時間
ta	$0.05 \sim 100,000$	CP の陽 (アノード) 時間
pn	pまたはn	第1ステップ電流の極性
si	$0.0025 \sim 32$	データ保存間隔 (s)
cl	$1 \sim 1,000,000$	セグメント数
priot		CPでの時間優先
prioe		CPでの電位優先
ei	-10 ∼ +10	初期電位 (V)

CPCR で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	cpcr	電流 - クロノポテンショメトリーの選択
ic	$0 \sim 0.25$	CP の陰 (カソード) 電流
ia	$0 \sim 0.25$	CP の陽 (アノード) 電流
v	$1\text{e-}6 \sim 0.01$	電流スキャン速度 (A)
eh	-10 ∼ +10	高電位リミット (V)
el	-10 ∼ +10	低電位リミット (V)
Si	$0.0025 \sim 32$	データ保存間隔 (s)

PSA で使用するコマンドは以下の通り

コマンド	パラメータ	説明	
Tech	psa	ポテンショメトリーストリッピング分析の選択	
depe	-10 ∼ +10	析出電位	
dept	$1 \sim 100,000$	析出時間	
ef	-10 ∼ 10	最終電位 (V)	
i	0 ~ 0.25	PSA での制御電流 (A)	
qt	$0 \sim 100,000$	測定前の静止時間 (s)	

OCPT で使用するコマンドは以下の通り

コマンド	パラメータ	説明	
Tech	ocpt	オープンサーキットポテンシャルの選択	
st	0.1 ~ 500,000	測定時間 (s)	
eh	-10 ∼ +10	高電位リミット (V)	
el	-10 ∼ +10	低電位リミット (V)	

PSC で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	psc	プローブスキャン曲線の選択
ei	-3.275 ∼ +3.275	プローブ電位 (V)
Sens	$1e-12 \sim 0.001$	プローブ感度 (A/V)
ер	-3.275 ∼ +3.275	プローブパルス電位 (V)
tp	0 ~ 10	測定時間 (s)
td	$0.1 \sim 50$	サンプリング前のパルス後の遅延時間 (V)
epon		プローブパルス電位オン
epoff		プローブパルス電位オフ
e2	-3.275 ∼ +3.275	基板電位 (s)
Sens2	$1e-12 \sim 0.001$	基板感度 (V)
e2on		基板電位オン
e2off		基板電位オフ
i2on		基板電流測定オン
i2off		基板電流測定オフ
ilimiton		電流レベルが達した場合、プローブ動作は停止
ilimitoff		電流レベルがまで、プローブ動作は停止しない
imin	$0 \sim 0.01$	この電流レベル以下の場合プローブは停止
imax	$0 \sim 0.01$	この電流レベル以上の場合プローブは停止
dist	-50,000 ∼ +50,000	プローブ移動距離
incrdist	$0.0001 \sim 100$	プローブの増分距離
incrtime	$0.002 \sim 0.2$	增分時間 (s)
qt	$0 \sim 100,000$	測定前の静止時間 (s)
dir	x,y または z	スキャン方向

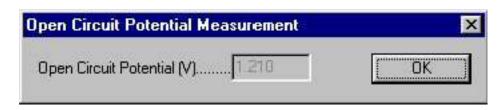
PAC で使用するコマンドは以下の通り

コマンド	パラメータ	説明
Tech	psc	プローブスキャン曲線の選択
ei	-3.275 ∼ +3.275	プローブ電位 (V)
Sens	1e-12 ∼ 0.001	プローブ感度 (A/V)
ер	-3.275 ∼ +3.275	プローブパルス電位 (V)
tp	0 ~ 10	測定時間 (s)
td	$0.1 \sim 50$	サンプリング前のパルス後の遅延時間 (V)
epon		プローブパルス電位オン
epoff		プローブパルス電位オフ
e2	-3.275 ∼ +3.275	基板電位 (s)
Sens2	$1e-12 \sim 0.001$	基板感度 (V)
e2on		基板電位オン
e2off		基板電位オフ
i2on		基板電流測定オン
i2off		基板電流測定オフ
ilimiton		電流レベルが達した場合、プローブ動作は停止
ilimitoff		電流レベルがまで、プローブ動作は停止しない
imin	$0 \sim 0.01$	この電流レベル以下の場合プローブは停止
imax	0 ~ 0.01	この電流レベル以上の場合プローブは停止
dist	-50,000 ∼ +50,000	プローブ移動距離
incrdist	$0.0001 \sim 100$	プローブの増分距離
incrtime	$0.002 \sim 0.2$	增分時間 (s)
qt	0~100,000	測定前の静止時間 (s)
dir	x,y または z	スキャン方向

マイクロコマンドの一例

8チャ	・ンネルまでのマクロ:	コマンド使用例	LSV による測定例	EQCM による測定例
e*off	第 * 番の電極 off		tech:lsv	cellon
e*on	第*番の電極 on		e1=-0.2	qcmon
sens*=1e-6	第*番の電極の電流	咸度	ef=0.8	tech:cv
e*scan		の電極と同じように	v=0.1	sens=5e-5
c scan	スキャン	vielMecinios / te	sens=1e-5	ei=0.1
		この平日	run	eh=1
	(* = 2,3,4,5,6,7,8) 電超	図の留方	save: lsv100	el=0.1
CV 0	の連続測定		v=0.2	v=0.5 si=0.001
tech:	cv		run save: lsv200	s1=0.001 cl=20
ei=0.	7		v=0.5	run
eh=0			run	tech:ca
	. /		save: lsv500	qcmon
el=0			v=1	ei=0.1
pn=n			run	eh=0.111
v=0.1	1		save: lsv1000	el=0.1
cl=1				cl=1
si=0.			r	pw=1000
qt=2	SSF を	用いた 999 回測定した例		si=0.1
sens=	=1e-6	for=999		qt=0
e2sca	an	tech:ssf		sens=5e-5
sens2	2=1e-6	ei=0.0		run
e3sca		sens=1e-6		save:test
sens3	3=1e-6	qt=0		
e4sca	an	es1=-0.8	i-t テクニックを	用いた測定法
sens4	l=1e-6	st1=1	10,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 - TOMOLA
e5sca		ei2=-0.8	1 電極による i-t 測定	2 電極による i-t 測定
	5=1e-6	ef2=-1.2	tech: i-t	tech:i-t
e6sca	an	v2=0.1	st=30	eiincr = 0
sense	5=1e-6	ei3=-1.2	cellon	ei=-0.5
e7sca	ın	ef3=-0.8	ei = 0	st = 2
	7=1e-6	v3=0.1	run	sens=1e-5
e8sca		es4=1.25	save: file0	qt=0
	3=1e-6	st4=1	for: 7	e2 = -0.1
		es5=1.25	ei=-0.2	e2on
seque	ential		run	i2on
run		st5=5	save: file1a	sens2=1e-5
save:	CV001	es6=0.0	ei=0	cellon
		st6=1	run save: file1b	for:10
		run	next	run save: file
		save:ssf	neat	eiincr=0.1
		next		next
				celloff
フカロコー	フンドの詳細につい	てはコマンドの機能説明	た会昭1 ア下さい	

eiincr=0


マクロコマンドの詳細についてはコマンドの機能説明を参照して下さい。

オープンサーキットポテンシャルコマンド

このコマンドを使用すると開回路ポテンシャルを測定します。

オープンサーキットポテンシャルはセルに電流が流れない作用電極と参照電極の電位です。 これは重要なパラメータです。測定を開始する前の初期状態を知らせます。研究中の化合物が 酸化または還元性であるかを見分けることができます。

測定後、システムはオープンサーキットポテンシャルダイアログボックスによりオープンサーキットポテンシャルを表示します。その値を読み込んだ後、OK をクリックするとダイアログボックスを閉じます。

iR 補償コマンド

このコマンドを使用すると溶液抵抗とセル時間定数、同様に自動またはマニュアルによる iR 補償の使用または使用しない設定を行います。

システムは iR 補償ダイアログボックスを表示し、iR 補償条件を設定できます。

次のオプションはiR 補償パラメータ設定できます。:

iR 補償試験結果

iR テストボタンをクリックすると、システムは溶液抵抗とセル時定数試験を行います。結果はここで報告されます。

システムは必要な補償レベルに到着するまで徐々に補償レベルを上げるか、またはシステム を不安定になるまで安定性をテストします。実際の許容補償レベルと未補償抵抗が表示されま す。未補償抵抗は算出された抵抗と許容補償レベルから算出されます。

最大許容抵抗補償はi/Eコンバーターのフィードバック抵抗に制限されることに注意してください。

iR 補僧試験

iR 補償試験を開始する前に、テストパラメータをチェックします。

テスト電位は電気化学反応が起こらないテストポテンシャルです。システムが試験を行う時、テストポテンシャルの周りにポテンシャルステップを印加します。試験結果は電気化学セルが一連の二重層キャパシターの溶液抵抗と同一ならば良好です。テスト電位の範囲は -10V です。

ポテンシャルステップ振幅を調整します。振幅を大きくすると、S/N 比は良くなります。しかし、振幅を大きくしすぎるとファラディー電流が流れます。 0.05V ステップ振幅が推奨されます。ステップ振幅の範囲は $0.01\sim0.25\,V$ です。

補償レベルは溶液抵抗を測定に基づいて補償したい抵抗の割合です。パラメータの範囲は 0 ~ 200% です。デフォルト値は 100% です。

オーバーシュートレベルは安定性試験の基準です。ポジティブフィードバック量を増加しますと、システムは不安定になります。ポテンショスタットが共振開始する前に、ポテンシャルに応答する電流のオーバーシュートが表れます。許容のオーバーシュート高くなると、可能な補償レベルも高くなりますが、システムの安定性は悪化します。パラメータの範囲は0~

100%です。デファルトレベルは2%です。

iR テストボタンをクリックすると、システムは溶液抵抗と安定性を試験します。結果はiR 補償試験結果ボックスに報告されます。

iR 補償の詳細については下記の文献を参照して下さい。"Intelligent, Automatic Compensation of Solution Resistance" P. He, and L. R. Faulkner, Anal. Chem., 58, 517-523 (1986).

次の測定の iR 補償

このボックスがチェックされますと、次の測定のiR補償は使用可能です。自動補償が設定され、iR補償試験が行われないか、または感度スケールが変更されているならば、iR補償は使用できません。このオプションはコントロールメニューの測定条件コマンドからオン、オフできます。

iR 補償使用可

オプション"一回"が選択された場合、iR 補償は次の測定にのみ適応され、次に使用不可になります。連続測定に適応される同じ補償条件が必要ならば、"常時"オプションを選択します。オプションを選択するために最適なラジオボタンをクリックします。

iR 補償モード

自動 iR 補償またはマニュアル iR 補償を選択できます。自動 iR 補償は iR 補償試験結果に基づいています。補償したい抵抗を入力することによりマニュアル iR 補償を選択できます。オプションを選択するために最適なラジオボタンをクリックします。

マニュアル補償抵抗

マニュアル iR 補償を選択する場合、システムに補償させる抵抗値を入力します。補償レベルに注意して下さい。補償レベルが実際の溶液抵抗に近寄るか、または超えている場合、ポテンショスタットは共振します。最大許容抵抗補償は i/E コンバーターのフィードバック抵抗に制限されます。

このパラメータは自動iR補償が選択された場合、有効ではありません。

iR 補償

ポテンショメトリックな実験では、作用電極と比較電極の界面領域を横切る電位降下の合計 はこれら2電極間の印加電位と同じと仮定しています。溶液抵抗による2電極間のiR降下が あるからです。この抵抗は支持電解質を添加することにより下げらますが、多くの場合、考慮 する必要はありません。このような場合、電気的に補償できます。

- 1. 未補償抵抗の測定
- 2. 補償と回路安定性試験

未補償抵抗の測定

この測定では、電気化学セルは電子工学的に RC 回路と等価と考えます。即ち未補償抵抗 Ruは、二重層容量 Cdl と直列です(図 5-1)。 ファラディーインピーダンスをこのモデルでは考 えに入れないので、テストポテンシャル(テスト E)はファラディー過程が起こらない値にし なければなりません。ポテンシャルステップ (ΔE) は、このポテンシャル付近で印加します (即 ち、テストE-25mVからテストE+25mV)。

電流はステップが印加された後、54 μ s と 72 μ s においてサンプリングします。 電流は指 数関数的に減衰するので(図 5-2 参照)、初期電流 1。はゼロ時間に外挿することにより算出され ます。

 $\Delta E = l_0 R_0$ なので、 R_0 はこの測定から算出されます。

表 5-1 は指数関数の外挿によるいくつかのダミーセルの抵抗測定の結果を示します。時定数 が 200 μ s より大きい場合、非常に良く一致します。しかし、時定数が 100 μ s 以下では、誤 差は大きくなります。従って、自動 iR 補償は、未補償抵抗が低いか、時定数が小さいときに は有効に働きません。この誤差は理論通りにいかない電流応答の急激な立ち上がりによるとみ られます。

表 5-1. 指数関数の外挿による測定抵抗と時定数 "

Ru/ Ω	測定 RC 時定数 / μ s ^b	測定 Ru/Ω	Ru 測定の誤差(%)
50.3	38	29	-42
100.4	94	92	-8.4
150	146	145	-3.3
200	198	198	-1.0
250	250	249	-0.4
300	302	301	+0.3
347	350	349	+0.6
401	406	404	+0.7
452	360	449	-0.7

a: P. He, L.R. Faulkner, Anal. Chem. 58 (1986) 523 b: 10 μ F の容量を使用

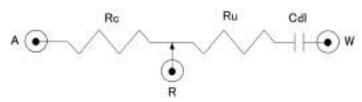
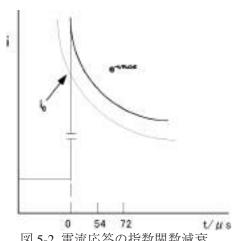



図 5-1. 抵抗算出に使用する RC 回路

補償と回路安定性試験

補償はポテンショスタットのポジティブフィードバックによって行なわれます。しかし、補償が100%よりかなり小さくても回路が不安定になるという問題が起こることがあります。それゆえに、ポジティブフィードバックは算出した未補償抵抗の一定割合を段階的に付加していきます。

即ち、80%まで5%づつ、80%から90%まで2%づつ、その後1%づつ増加します。

回路の安定性は増加毎にテストします。補償の程度はユーザーが定義できます(デフォルト値 =100% とする)。

安定性試験では、テスト Eを挟んで 50 mV ステップが印加されます。 ベースラインはポテンシャルステップを印加する直前のデータを集めることによって測定されます。そして、このベースライン値をステップデータから減算し、正味電流値とします。

補償量を増やすに従い、最初の電流応答は指数関数的減衰後、リンギング効果を示し(図 5-3 参照)、振動します。前振動リンギングの程度はオーバーシュートとして定義する量で数量 化します。オーバーシュートは極小(ネッ

トネガティブ)電流値(I 最小)と極大電 I_{max} 流値(I 最大)との比率で定義し、パーセントで表示します。即ち、オーバーシュート=(I最小/I最大)x100です。最大許容オーバーシュート値はユーザーが定義できます(デフォルト値=10%です)。

図 5-4. 電流応答の前振動リンギング

もし測定オーバーシュート値が最大許容値以下ならば、補償は続けられます。もし許容値より大きく、補償の希望するレベルにまだ達していないなら、回路を安定させるために比較電極とカウンター電極の間にコンデンサーを挿入します。そして補償が

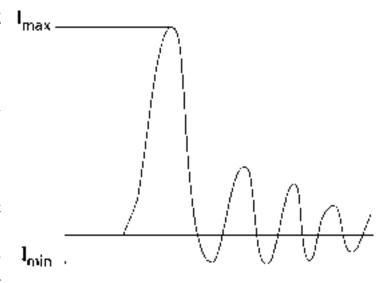


図 5-3. iR 補償によるリンギング効果

必要なレベルに達するか、オーバーシュート値が越えられるまで(もしこれが起こるならば、 実験で使う補償量をわずかにこの値から減少します)テストを続けます。

補償レベルを増やす1つの方法はオーバーシュートパーセンテージを増やすことです。 40% までは通常、安全です。

フィルター設定コマンド

このコマンドは電位と電流フィルターを設定するために使用します。

ポテンシャルフィルターはポテンシャル波形をフィルターするために使用され、二次 Bessel ローパスフィルターです。トランジェント成分を取り除くために使用できます。応用は階段波ランプをリニアースィープに変換することです。

キャパシターはローパス RC フィルターを形成するために i/E コンバーターのフィードバック抵抗に接続されます。最初に高周波数ノイズを除きます。

ゲインステージの前に、シグナルフィルターが使用され、二次 Bessel ローパスフィルターです。

フィルターは測定中のノイズを低減するのに有効です。

システムはフィルター選択ダイアログボックスを表示し、フィルターパラメータを設定できます。

次のオプションはフィルターパラメータを設定できます。:

フィルターの概念、パラメータについて詳しくなければ、自動設定を選択して下さい。

i/E 変換フィルター

このボックスは実際の電流 - 電圧コンバータフィルター設定を表示します。

選択

i/E コンバーターフィルターカットオフ周波数を選択します。これは電流 - 電圧 (i/E) コンバーターと組み合わせた RC フィルターです。フィルターの設定は測定のタイムスケールと実験のタイプに依存します。自動を選択すると、デフォルト設定になります。

あるカットオフ周波数が時々選択されません。つまり任意の感度スケールの場合、i/E コンバーターのフィードバック抵抗が調べられ、RC の組み合わせは選択したカットオフ周波数を構成できません。これは相対的に低カットオフ周波数を選択しますが、低感度スケールを使用するか、またはこれは相対的に高カットオフ周波数を選択するが、高感度スケールを使用すると起きます。感度スケールを変更することにより最適なカットオフ周波数を設定できます。

シグナルフィルター

このボックスは実際のシグナルフィルター設定を表示します。

選択


シグナルフィルターカットオフ周波数を選択します。これは2次Besselフィルターです。フィルターの設定は実験のタイプ、タイムスケールに依存します。自動を選択しますと、デフォルト設定です。

セルコマンド

このコマンドはパージ、攪拌、電気化学洗浄を制御します。攪拌、水銀滴下採取、前滴下、 安定化キャパシターを設定できます

システムはセルコントロールダイアログボックスを表示し、セルコントロールを設定できます。

次のオプションはセルコントロールを設定できます。

攪拌ラインのコントロールレベル

攪拌ラインコントロールシグナルは高低のどちらか一方です。BAS社は高コントロールシグナルを使用しています。また、PAR社は低シグナルを使用しています。最適なコントロールレベルを選択する場合、ラジオボタンをクリックします。

迅速攪拌

迅速攪拌時間を入力できます。パラメータ範囲は $1 \sim 32,767$ です。攪拌ボタンを押しますと迅速攪拌が開始されます。

迅速パージ

迅速パージ時間を入力できます。パラメータ範囲は $1 \sim 32,767$ です。パージボタンを押しますと迅速パージが開始されます。

迅速セルオン

セルポテンシャル (-10 \sim +10 の範囲)、セルオンタイム (1 \sim 32,767 の範囲)を入力します。 セルオンボタンを押しますと、任意の時間の任意のポテンシャルで電極を安定させます

水銀滴下採取

これは水銀滴を秤量し、採取するための有効なオプションです。採取したい滴数 $(1 \sim 1,000$ の範囲)、滴間のタイムインターバル $(0.5 \sim 10)$ を入力します。採取プッシュボタンを押しますと、採取が開始します。

測定の間の攪拌

この項目をチェックしますと測定の間の攪拌が行えます。この項目はコントロールメニューの測定状況コマンドからオン、オフできます。

測定の間のパージ

この項目をチェックしますと測定の間のパージが行えます。この項目はコントロールメニューの測定状況コマンドからオン、オフできます。

測定前の SMDE 滴下

パラメータのデフォルト値は1です。通常システムは静止水銀滴下電極 (SMDE) が使用される時、測定前に新しい滴を形成するために滴下 / ノックを組み合せます。このデフォルト条件を変更できます。パラメータ範囲は $0\sim20$ です。前滴下は0に設定されている場合、次の測定には前の測定に使用された滴下条件が使用されます。SMDE の場合、キャピラリーに気泡が付着し、接触不良が起ることがあるで、前滴下は1 滴以上が有効です。

このオプションはコントロールメニューの測定状況コマンドで変更できます。

安定化キャパシター

カウンター電極と参照電極の間には 0.1 F安定化キャパシターが接続されています。キャパシターはポテンショスタットを安定化しますが、いくらかシステムを減速させます。これは作用電極の二重層キャパシタンスが大きい時、つまり、バルク電気分解または大きな iR 補償が必要の場合、特に有効です。

この安定化キャパシターのデフォルトは自動設定です。ラジオボタンの一つをクリックする ことにより、自動設定を使用不可にできます。

4 雷極

ポテンショスタットを4電極にセットします。液液界面の測定に用いられます。赤クリップはフェーズ1のカウンター電極に接続します。白クリップは同じ相の参照電極に接続します。緑クリップはフェーズ2のカウンター電極に接続します。黒クリップはフェーズ2の参照電極に接続します。

4 電極は電極クリップ、コネクター、リレー、基板の接触抵抗による電位降下を探知するために使用します。接触抵抗は約 $0.2 \sim 0.3~\Omega$ です。電流が250 mAの場合、 $50 \sim 75 \text{mV}$ の降下に相当します。バッテリー等の低インピーダンス測定には使用できません。4 電極を用いますと、接触抵抗の影響は無視でき、低インピーダンス測定を行うことができます。

相対的に大きなインピーダンス (10 Ω以上) の場合、4 電極はオフにします。

測定中セルオン

デフォルトでは、測定の間セルオンになります、測定後、セルオフになります。この項目をチェックしてから、取扱いに注意して下さい。セルオン時、不適切にセルを接続または接続しない場合、電極にダメージを与えます。最初に参照電極とカウンター電極を接続して下さい。取外す場合、作用電極を最初に外します。

測定後初期電位に戻る

これをチェックしておきますと、測定後、初期電位に戻ります。さもなければ、電位は前の 測定の最終値になります。測定中セルオンをチェックしている場合のみ意味があります。

このコマンドはツールバーボタンです。:

ステップファンクションコマンド

連続矩形波を発生するためのコマンドです。このコマンドは電極処理(または洗浄)または他の目的に使用できます。

データは採取、表示されません。

システムはステップファンクションダイアログボックスを表示し、ステップ条件設定でき、 ステップファンクションジェネレーターを開始します。

開始電位(E)	2	ОК
期間①(s)	0	キャンセル
ステップ電位(<u>L)</u> XV//it (A)	0	ヘルプ(H)
ステップ時間1①(3)	0.1	測定(R)
ステップ電位(2)(V)/i2(A)	0	
ステップ時間2(T)(s)	0.1	
ステップセグメント(S)	2	-

次のオプションはステップポテンシャル、期間、セグメントを設定することができます。:

パラメータ	範囲	内容
開始電位 (V)	-10 ∼ +10	開始電位
期間 (s)	0 ~ 100,000	開始電位の期間
ステップ電位 1 (V)	-10 ∼ +10	第一ステップ電位
ステップ時間 1 (s)	$0.0001 \sim 100,000$	各ステップの期間
ステップ電位 2 (V)	-10 ∼ +10	第二ステップ電位
ステップ時間 2 (s)	$0.0001 \sim 100,000$	各ステップの期間
ステップセグメント	1 ~ 2,000,000	ステップセグメント、半サイクルが一セグメント
ガルバノスタットモード	チェックまたは未チェック	ポテンショスタットまたはガルバノス
		タットモードの選択

注:

- 1. 開始電位、ステップ電位 1、ステップ電位 2 のポテンシャル範囲は 13.1 V 以下です。
- 2. 開始電位期間は 0.001 sec 以下の場合、開始電位は無視されます。
- 3. ステップはステップ電位 1、ステップ電位 2、ステップ電位 1、ステップ電位 2 ... の連続です。終了ポテンシャルは奇数セグメントの場合、ステップ 1 電位となり、偶数セグメントの場合、ステップ電位2 となります。
- 4. ガルバノモードがチェックされますと、ステップ E1/i1 と E2/i2 は電流ユニットになります。

測定

測定ボタンを押しますと、ステップファンクションジェネレーターが動きます。ステータスボックスはステップ数、残りのステップ、時間を示しながら表示します。停止プッシュボタンを押しますと、この機能はキャンセルできます。データは採取、表示されません。

前処理コマンド

測定する前に作用電極を処理するためのコマンドです。これは電極洗浄または他の使用に有効です。前処理は析出または静止時間の前に起こります。

下記図は測定の前の前処理ダイアログボックスです。:

3ステップの条件でプログラムできます。次のオプションは前処理を設定できます。:

前処理使用可能

前処理は析出または静止時間の前に起ります。このボックスを未チェックにすると前処理ステップを回避します。

ポテンシャル

パラメータ範囲は -10~10です。

時間

パラメータ範囲は $0 \sim 6,400$ です。特定のステップの前処理時間がゼロの場合、このステップを回避します。時間設定は1 msec 以下の場合、時間のコントロールは正確でないかもしれません。

攪拌オン

この項目をチェックしますと、前処理の間攪拌が開始されます。

パージオン

この項目をチェックしますと、前処理の間パージが開始されます。

回転ディスク電極コマンド (モデル 1130C/1140C)

回転ディスク電極の回転速度を設定するためのコマンドです。いろいろなケースで回転を ON、OFF できます。

下記図は回転ディスク電極制御ダイアログボックスです。

次のオプションは回転ディスク電極制御を設定できます。:

回転速度 (rpm)

このパラメータは回転ディスク電極の速度を設定できます。回転速度範囲は $0 \sim 10,000 \text{ rpm}$ です。機器の背面にバナナジャック口があり、 $0 \sim 10,000 \text{ rpm}$ は $0 \sim 10 \text{ V}$ に相当します。

析出中の回転

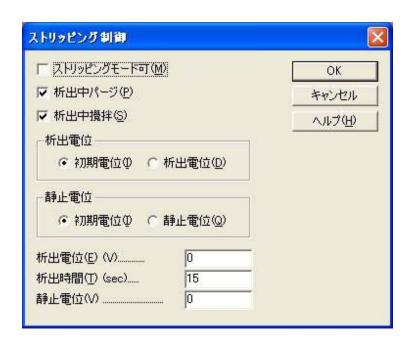
この項をチェックしますと、ストリッピングモードでの析出中回転します。この項目はコントロールメニューの測定状況コマンドを ON、OFF します。

静止時間中の回転

この項をチェックしますと、静止時間中回転します。この項目はコントロールメニューの測定状況コマンドを ON、OFF します。

測定中の回転

この項をチェックしますと、測定中回転します。この項目はコントロールメニューの測定状況コマンドを ON、OFF します。


測定の間の回転

この項をチェックしますと、測定の間回転します。この項目はコントロールメニューの測定 状況コマンドを ON、OFF します。

ストリッピングモードコマンド

このコマンドはストリッピングモードの使用可能、使用不可、析出条件を設定できます。ストリッピングモードコマンドはLSV, SCV, DPV, NPV, SWV, ACV, SHACV のテクニックにしか利用できません。ポーラログラフィーモードが選択されていると、利用できません。

下記図はストリッピング制御ダイアログボックスです。:

次のオプションはストリッピングモード制御を設定できます。:

ストリッピングモード使用可能

この項目をチェックすると、ストリッピングモードは使用可能です。可能にする場合、析出ステップが測定中の静止時間ステップ前に挿入されます。析出電位、時間はこのダイアログボックスから選択できます。

析出期間後、静止時間前、ポテンシャルは初期電位に戻ります。ストリッピングステップ中 電位走査は初期電位から開始されます。

析出中のパージ

この項目をチェックすると、システムは析出期間中パージします。

析出中の攪拌

この項目をチェックすると、システムは析出期間中攪拌します。

析出電位

ラジオボタンの一つをクリックすることで、析出電位として初期電位または他の電位を選択できます。析出電位として初期電位を選択しない場合、下記に示す析出電位を入力します。

析出電位

初期電位と異なる析出電位を入力します。この値は初期電位が析出電位として選択されると 効果がありません。

析出時間

析出時間を入力します。パラメータ範囲は $0 \sim 100,000$ です。

現在のデータプロットコマンド

現在のデータをプロットするためのコマンドです。プロットをズームするために使用するコマンドです。マウスカーソルを X 軸、Y 軸にてクリックすることにより、軸オプションコマンドが表示されます。軸の再スケールならびに軸の名称変更を簡単に行うことができます。感度を同一に設定することにより、データの重ね書き、比較等を行う上で便利な機能です。

軸の設定はグラフオプションの項でも行えますが、ここでの特徴は軸の表示の選択が行えます。また、軸名表示を Scientific としますと、 1μ アンペアーを 1e-6A と表示できます。また、Engineering の場合、 1μ A と表示します。

データフィルードにマウスを移動し、ダブルクリックしますとテキスト挿入ダイアログボックスが表示されます。

テキストフィールドに表示したいテキストを入力できます。取り消しボタンを用いてテキストフィールドを消去できます。テキストの X 軸、Y 軸の位置も変更できます。挿入したい位置にマウスを移動し、マウスをダブりクリックすると X,Y の座標位置が表示されます。また、文字は1度単位で任意の角度に回転できます。

入力したテキストはデータと一緒に保存できます。

テクニックによりデータは各種形式で表示できます。

テクニック データ表示形式

CV スィープセグメント

TAFEL log 電流~電位

電流~電位

電流密度~電位

CA $i \sim t$

 $i \sim t^{-1/2}$

CC $Q \sim t$

 $O \sim t^{1/2}$

SWV フォワード電流

リバース電流

フォワード、リバース電流

フォワード、リバース差分電流

フォワード、リバース電流の合計

フォワード、リバース電流、総計電流

フォワード、リバース電流、差分電流

ACV 絶対電流

位相選択電流

抵抗

キャパシタンス

PSACV 絶対電流

位相選択電流

抵抗

キャパシタンス

BE チャージ対時間

電流 対 時間

電流 対 log (時間)

IMP Bode: $\log Z \sim \log (freq)$

Bode: phase ~ log (freq)

Bode: log Z"& Z'~ log (freq)

Bode: $\log Y \sim \log (freq)$

Nyquist: Z"~Z'

Admittance: Y"~ Y'

ワールブルグ: $Z'' \& Z' \sim w^{-1/2}$

 $Z' \sim w Z''$

Z'~ Z"w

 $cot (phase) \sim w^{1/2}$

IMP-t or IMP-E $\log Z \sim t$ or E

phase ~ t or E

 $Z \sim t$ or E

 $Z'\sim t$ or E

Z"~ t or E

Z'& Z"~ t or E

 $\log (Z'\& Z'' \sim t \text{ or } E$

 $\log Y \sim t \text{ or } E$

 $Y \sim t$ or E

 $Y' \sim t$ or E

Y"~ t or E

Y'& Y"~ t or E

 $\log (Y'\& Y'' \sim t \text{ or } E$

IMP-E $Rs \sim E$

Cs ~ E

Rp ~ E

Cp ~ E

 $1/(Cs \times Cs) \sim E$ (Mott-Schottky)

 $1/(Cp \times Cp) \sim E$ (Mott-Schottky)

CP, PSA 電位 ~ 時間

dE/dt ~ 時間

dt/dE ~ 電位

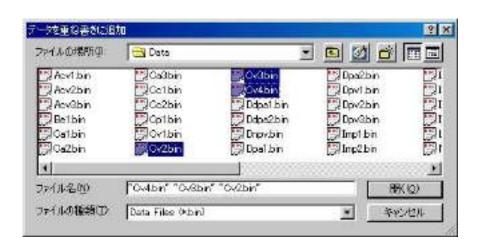
電位~チャージ

データ表示フォーマットを選択する場合、グラフオプションコマンドを起動します。

データがディスクに保存された時、表示フォーマットもまた保存されます。データが読込まれた時、保存される前と同じように表示されます。これはまた上書きプロット、パラレルプロット、多数ファイル印刷にて有効です。

グラフオプション、色と説明、フォントコマンドによってデータプロットをカスタマイズできます。

このコマンドデータがないと使用できません。



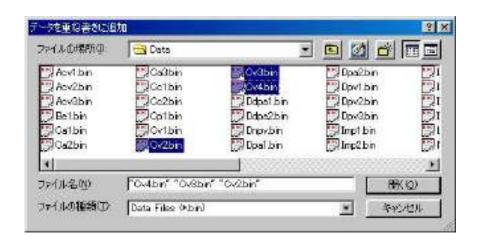
データ重ね書き表示コマンド

このコマンドを使用すると、シングルプロットに多数のデータをプロットします。これは特にデータ比較に有効です。色と説明は対応するファイル名と一緒に表示されます。プロットしたい必要なデータを選択できます。

多数のファイルを選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。このコマンドは同じディレクトリーの多数のファイルを選択できます。異なるディレクトリーまたはディスクでデータを重ね書きする場合、データを重ね書き追加コマンドを使用して下さい。

下図は多重プロットのダイアログボックスです:

プロットのスケールは現在の電流データに応じて決ります。このコマンドはデータのタイプをチェックしません。両X,Y値がプロットスケールの中にあるのであれば、データポイントはプロットされます。


グラフオプション色、説明フォントコマンドによってデータプロットをカスタマイズできます。特に、各トレースの色、説明は色と説明コマンドにて指定できます。

このコマンドデータがないと使用できません。

データを重ね書きに追加コマンド

このコマンドは上書きプロットコマンドの補足的なものです。それは全てのデータを再選択することせずに、更にデータを上書きプロットに追加します。異なるディレクトリー、ディスクのデータを多重できます。多数のファイルが選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。

下図はデータ多重の追加ダイアログボックスです:

プロットのスケールは現在の電流データに応じて決まります。このコマンドはデータのタイプをチェックしません。両X, Y 値がプロットスケールの中にあるのであれば、データポイントはプロットされます。

グラフオプション色、説明、フォントコマンドによってデータプロットをカスタマイズできます。特に、各トレースの色、説明は色と説明コマンドにて指定できます。

このコマンドデータがないと使用できません。このコマンドは現在のプロット状況が上書き プロットでない場合、使用できません。

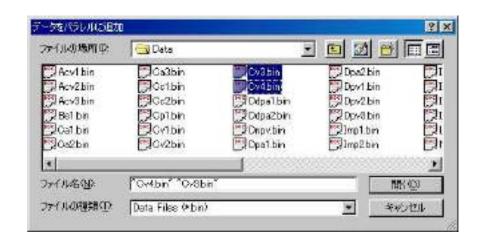
パラレルデータ表示コマンド

このコマンドはパラレルモードで多数のデータセットをプロットします。これは異なるテクニック、データ比較したいデータを観察するのに有効です。すでに選択したデータと一緒にプロットしたいデータファイルを選択できます。多数のファイルが選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。

このコマンドは同じディレクトリーで多数のファイルを選択できます。異なるディレクトリー、またはディスクのデータをパラレルにする場合、データをパラレルに追加コマンドを使用して下さい。

下記図はパラレルデータプロットのダイアログボックスです:

スケール固定が使用されていない場合、各プロットのスケールは自動的にディスクから読込まれた各データセットに応じて決ります。スケールを固定する場合、全てのプロットは同じ固定スケールによって表示されます。スケールを固定するにはグラフオプションコマンドを使用して下さい。


グラフオプション色、説明フォントコマンドによって、データプロットをカスタマイズできます。

このコマンドはデータが無い時に無効です。

データをパラレルに追加コマンド

このコマンドはパラレルプロットコマンドの補足的なものです。それは全てのデータを再選択することせずに、更にデータをパラレルプロットに追加します。異なるディレクトリー、ディスケットのデータをパラレルプロットに追加とプロット順番を整理します。多数のファイルが選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。

下記図はデータをパラレルに追加ダイアログボックスです:

プロットスケールは現在のデータに応じてプロットされます。このコマンドはデータの種類をチェックしません。両X,Y値がプロットスケールに入るならば、データポイントはプロットされます。

グラフオプション色、説明フォントコマンドによってデータプロットをカスタマイズできます。

このコマンドはデータがないと使用できません。このコマンドは現在のプロット状況がパラレルプロットでないと使用できません。

ズームコマンド

このコマンドはデータプロットを拡大します。

これはトグルスイッチです。ズーム機能が使用できる時、チェックマークがメニュー項目の下に表れます。ツールバーのズームを押しますと、データプロットエリアにマウスカーソルを移動させると上向き矢印のカーソルが現れます。

拡大する場合。一つの角でマウスボタンを押し、観察したエリアの対角線上にドラッグし、マウスボタンを放します。

元に戻したい場合、ズームコマンドを再度クリックします。この操作はズーム機能を無効に する。

マニュアル結果コマンド

このコマンドはピークまたは波形ポテンシャル、電流、面積をマニュアルで結果を表示する ことができます。ピークまたは波形のベースラインを視覚的に調べることができます。

これはトグルスイッチです。マニュアル結果コマンドを有効にした時、チェックマークがメニュー項目の下に表れます。マニュアル結果ツールバーボタンが押された状態にあります。データプロットエリアにマウスカーソルを移動させると上向き矢印のカーソルが現れます。

ピークまたは波形を正確にレポートするために、ピーク定義コマンドによりピーク波形を定義しなければなりません。ピーク波形はガウス、拡散またはシグモイダルになります。ピーク(または波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(または波形)電流、ピーク面積を知りたい場合、調べることができます

ガウスピークの場合、ベースラインはピークの2つのサイドの2ポイントにより調べられます。1ポイントでマウスボタンを押し、それをドラッグし、他のポイントでマウスボタンを放します。ピークを接続する垂線がベースラインとして表れます。数値レポートはプロットの右側に示されます。

拡散ピークの場合、ベースラインはピークの底部を拡張して調べます。ベースラインを調べるために、ベースラインの底部でマウスボタンを押し、ドラックしピークポテンシャルを通した後、マウスボタンを放します。ピークを接続する垂線がベースラインとして表れます。数値レポートはプロットの右側に示されます。注意:ピーク面積がレポートされた時、それは半値ピーク面積です。

シグモイド波形の場合、2つのベースラインが必要です。一つは波形の底部にします。もう一つは波形のプラトー部分です。ベースラインを調べるために、マウスボタンを押し、ドラッグし、放します。2っのベースラインを繋ぐ垂線、波形の中間を通る線が表れます。数値データはプロットの右側に示されます。

次のコマンドでマニュアルでピーク検索を行えます。

ピーク定義コマンド

このコマンドを使用すると、ガウス、拡散またはシグモイダルのピーク波形を定義します。 ピーク(または波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(または 波形)電流、ピーク面積を報告したい場合、設定することができます

ピーク定義は自動、マニュアル結果レポートが使用されます。

下記図はピーク定義ダイアログボックスです:

次のオプションはピーク波形を定義でき、報告に必要なパラメータも設定できます。:

ピーク波形

データの性質に応じて、ピーク波形を選択できます。ピーク波形はガウス、拡散またはシグモイドです。ピーク波形は電気化学テクニックに応じて決まります。テクニックを変える毎にデフォルト値はピーク波形を割り当てます。しかし、設定は変更できます。

レポートオプション

ピーク(または波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(または波形)電流、ピーク面積を報告したい場合、設定することができます。

ピークまたは波形検索ポテンシャル範囲

ピーク波形により、ピーク検索ポテンシャル範囲は調整されます。幅の広いピークまたは波形の場合、検索ポテンシャル範囲は大きくなり、逆もまた同様です。検索ポテンシャル範囲はピークまたは波形の両サイドを含みます。

このパラメータは自動結果レポートだけに意味があります。

サイクリックボルタンメトリーデータの場合、グラフメニューのグラフオプションコマンドでセグメントを選択できます。

XY プロットコマンド

このコマンドを使用すると、X-Y データを作成できます。データに直線フィッティングもできます。

データ編集後、OK ボタンをクリックします。 X-Y プロットは一時的なものです。他のデータ表示コマンドが実行されますと、それは消えます。しかし、データプロットをカスタマイズするためにグラフオプション、色、説明、フォントコマンドが使用できます。

下記図は X Y プロットのダイアログボックスです:

次のオプションはデータの編集、プロットオプションの入力が行えます:

XY データ配列編集

XYデータポイントを入力します。セパレーターとしてコンマまたはスペースを使用します。 データの各対は一行となります。:

x1, y1

x2, y2

x3, y3

.....

読み込み

このコマンドは保存データを読み込むために使用します。

保存

このコマンドはデータを保存するために使用します。XY タイトル、単位、ヘッダー、注意はデータと一緒に保存されます。

重ね書きプロット

このコマンドを使用すると幾つかのデータプロットを重ね書き表示すします。記号と記号に繋ぐライン両方が必要ならば、2つの異なる名前でデータ保存、色と説明コマンドを使用して、

最適な説明の選択をします。スケールを固定する場合、グラフオプションコマンドを使用してください。

システムは重ね書きデータ表示ダイアログボックスを表示し、XYデータ配列編集でデータと一緒にプロットしたいデータファイルを選択できます。多数のファイルが選択できます。

プロットのスケールは XY データ配列編集でのデータに応じて決まります。両 X、Y 値がプロットスケールの中にある場合、データポイントはプロットされます。

パラレルプロット

このコマンドを使用すると、パラレルモードで多数のデータセットをプロットします。

システムはパラレルデータを表示し、XYデータ配列編集でデータと一緒にプロットしたい データファイルを選択できます。多数のファイルが選択できます。

スケールが固定されていない場合、各プロットはディスクから読み込まれる各データセット に応じてスケールが決まります。後者の場合、すべてのプロットは同じ固定スケールを持ちま す。スケールを固定する場合、グラフオプションコマンドを使用して下さい。

プロット

このコマンドを使用すると XY データ配列編集をプロットします。

プロットのスケールはデータ範囲に応じて自動的に決まります。スケールを固定する場合、グラフオプションコマンドを使用して下さい。

XY タイトル

XYタイトルを入力する。

単位

カスタマイズした XY 軸タイトルの単位または次元を入力

ヘッダー

これはヘッダーテキスト編集ボックスです。ヘッダーをここに入力しますと、プロットのトップにヘッダーを表示します。グラフオプションコマンドを使用してヘッダーチェックボックスをチェックします。

注

これは注テキスト編集ボックスです。注をここに入力します。注はプロットに表示できませんが、データファイルに保存できます。データのコメント、後で目的、データの条件を思い出すために使用します。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。

ピーク変数 対 スキャン速度プロットコマンド

このコマンドはピーク電流 対 スキャン速度、ピーク電流 対 スキャン速度の平方根、ピークポテンシャル 対 スキャン速度の対数をプロットするために使用します。可逆表面反応の場合、ピーク電流はスキャン速度に比例します。可逆拡散系の場合、ピーク電流はスキャン速度の平方根に比例します。ピークポテンシャルは可逆系の場合、独立しています。スキャン速度の関数としてピークポテンシャルのシフトは遅い反応速度または化学的な複雑さのどちらかを示します。

データを直線フィッティングできます。

このコマンドはサイクリックボルタンメトリーまたはリニアースィープボルタンメトリーデータにのみ働きます。CVデータの場合、システムは最近使用されたデータセグメントのみ検索します。

ピークの電位窓を設定し、最適なファイルを選択した後、OK ボタンをクリックし、プロットします。 X-Y プロットは一時的です。他のデータ表示コマンドが実行されますと、それは消えます。しかし、プロットをカスタマイズするためにグラフオプション、色、説明、フォントコマンドは使用できます。

システムはピークパラメータ 対 スキャン速度プロットダイアログボックスを表示します:

次のオプションはピークの電位窓の設定、データファイルの選択ができます:

ピーク雷位窓

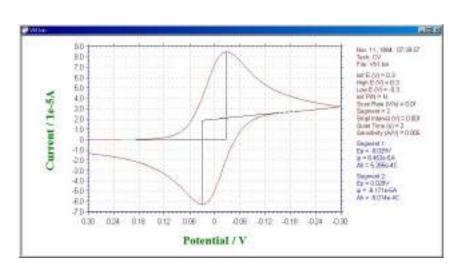
可能なピークポテンシャル範囲を入力します.システムは指定電位範囲を検索します。この ポテンシャル範囲で最初のピークが検出されたら、プロットに使用されます。

プロットのタイプ

ピーク電流 対 スキャン速度またはピーク電流 対 スキャン速度の平方根またはピークポテンシャル 対 スキャン速度の対数をプロットできます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。


ファイル選択

データをプロットする場合、ファイルを選択しなければなりません。CV または LSV データのみが読込まれます。他のテクニックで得られたデータは無視されます。少なくとも異なるスキャン速度で得られた3つのデータファイルを選択します。

ピーク変数プロットコマンドの操作法

グラフィックツール内にあるこのコマンドはピーク電流 対 スキャン 速度、ピーク電流 対 スキャン速度の平方根、ピークポテンシャル 対 ス キャン速度の対数をプロットを自動的に行う際に使用します。

このコマンドはサイクリックボルタンメトリーまたはリニアースィー プボルタンメトリーデータにのみ働きます。CV データの場合、システ ムは最初のデータセグメントのみ検索します。

ピーク変数プロットコマンドをクリックし、ピークの電位窓等の諸条件を設定します。

ピーク電位窓

ピークポテンシャル範囲を入力します。システムは指定電位範囲を検索します。このポテンシャル範囲で最初のピークが検出されたら、プロットに使用されます。

プロットのタイプ

ピーク電流 対 スキャン速度またはピーク電流 対 スキャン速度の平方根またはピークポテンシャル 対 スキャン速度の対数をプロットできます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。

可逆表面反応の場合、ピーク電流はスキャン速度に比例します。

薄層セルの場合

可逆系:
$$i_{\rm p} = \frac{n^2 F^2 vVC_{\rm o}^*}{4RT}$$

不可逆系:
$$i_{\rm p} = \frac{na \ n_{\rm a} F^2 V v C_{\rm O}^*}{2.718 RT}$$

表面反応

可逆系:
$$i_{\rm p} = \frac{n^2 F^2 vA \Gamma_{\rm o}^*}{4RT}$$

不可逆系:
$$i_{\rm p} = \frac{na \ n_{\rm a} F^2 A v \Gamma_{\rm O}^*}{2.718 RT}$$

可逆拡散系の場合、ピーク電流はスキャン速度の平方根に比例します。

可逆系:
$$i_p = (2.69 \times 10^5) n^{3/2} A D_O^{1/2} v^{1/2} C_O^*$$

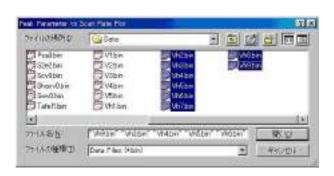
不可逆系:
$$i_p = (2.99 \times 10^5) n (a n_a)^{1/2} A D_O^{1/2} v^{1/2} C_O^*$$

ピークポテンシャルは可逆系の場合、独立しています。スキャン速度の関数としてピークポテンシャルのシフトは遅い反応速度または化学的な複雑さのどちらかを示します。

先行反応 (C,E,)

$$E_{p/2} = E^{o} - \frac{0.007}{n} - \frac{0.029}{n} \log k_{b} + \frac{0.029}{n} \log v$$

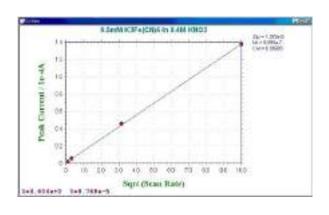
k, は先行反応の逆反応速度定数です。


後続反応

$$E_p = E^0 + \frac{RT}{nF} ln \frac{D_0^{1/2}}{D_p^{1/2}} - 0.78 \frac{RT}{nF} + \frac{RT}{nF} ln \frac{kRT}{nF\nu}$$

k は化学反応速度定数です。

ファイル選択


必要なファイルを選択した後、開くボタンを クリックし、目的のデータを取り込みまれます。CV またはLSVデータのみが読込まれます。他のテクニッ クで得られたデータは無視されます。少なくとも異 なるスキャン速度で得られた3つのデータファイル を選択します。

プロット

取り込みが終了後、OKをクリックすると プロットがおこなわれます。プロットは一時 的なもので、他のデータ表示コマンドが実行 されますとグラフは消えますが、プロットを カスタマイズするためのグラフオプション、 色、説明、フォントコマンドは使用できます。

電流一電位半対数プロットコマンド

このコマンドを使用しますと、電流ー電圧半対数プロットを作成します。このプロットは定常状態応答のデータ解析には有効です。半積分または積分による拡散またはピーク波形の応答をシグモイダル曲線に変換でき、データ解析を行います。可逆反応の場合、ポテンシャル軸の切片は半波電位で勾配 59/n mV です。予想した勾配からのずれは遅い反応速度または電極反応の複雑さを示します。

データの直線フィッテングを行うこともできます。

プロットのオプションを設定した後、OK ボタンをクリックし、プロットします。 X-Y プロットは一時的です。他のデータ表示コマンドが実行されますと、それは消えます。しかし、データプロットをカスタマイズするためにグラフオプション、色、説明、フォントコマンドは使用できます。

システムは電流 - 電圧半対数プロットダイアログボックスを表示します:

次のオプションはプロットパラメータを設定できます:

電位窓

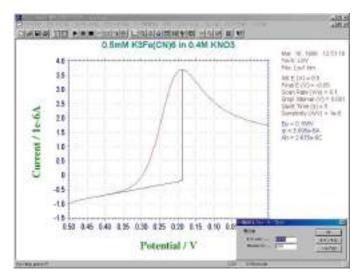
プロットしたいデータの電位窓を入力します。電位窓は 59/n mV 以内の半波電位周辺です。 データポイントは指定電位窓を超えるデータポイントは無視されます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。

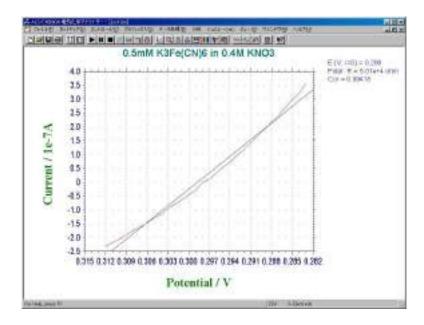
スペシャルプロットコマンド

このコマンド腐食領域で用いられる分極抵抗を算出します。


リニアースィープボルタンメトリーの場合、測定したデータをスペシャルプロットでデータ 解析することにより分極抵抗が得られます。分極抵抗プロットのメニューを下記に示します。

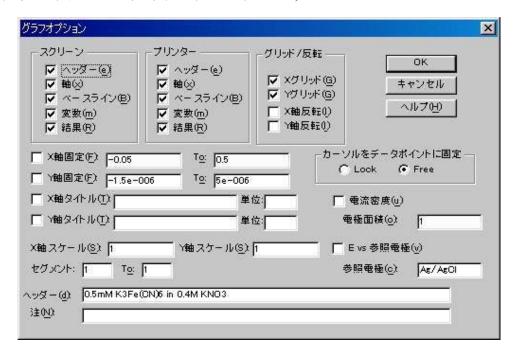
中心電位と電位範囲を入力し、OKをクリックしますと、分極抵抗プロットが表示されます。 そしてデータの中に分極抵抗と相関係数が算出されます。分極抵抗プロットは一時的な計算な ので、データ表示コマンドを立ち上げますと、画面は消えてしまいます。また、データを分り 易い形式で表示させる場合、グラフオプションの色、説明コマンドを用いてデータポイントを 見やすい形式に変換して下さい。

スペシャルプロットの操作法


このコマンドでは、LSV における分極抵抗のプロットが行えます。LSV で測定したグラフを表示後、グラフィックツール内のスペシャルプロットをクリックします。

コマンドをクリックすると、電流値が OA となる電位をプログラムが自動的にチェックし下記のように表示します。Window(V) により表示する電位範囲を指定します。もし、 OA の測定点が見つからない場合にはエラーメッセージが表示されます。

OK をクリックするとプロットがおこなわれます。プロットは一時的なもので、他のデータ表示コマンドが実行されますとグラフは消えますが、プロットをカスタマイズするためのグラフォプション、色、説明、フォントコマンドは使用できます。


グラフオプションコマンド

このコマンドを使用すると、グラフプロットオプションを選択できす。

グラフオプションは選択的にプロット見出し、XY グリッド、XY 軸反転をオン、オフできます。XY 軸の固定、XY 軸タイトルのカスタマイズ、データー緒に保存できるメモを書くことができます。

プログラムを終了した時、ほとんどのパラメータは保存されます。プログラムを再スタート した時、再読込みします。

下記図はグラフオプションダイアログボックスです:

次のオプションはグラフオプションを選択できます。:

スクリーン

ベッダー、軸、ベースライン、パラメータ、結果をスクリーン上で選択的にオン、オフできます。 ヘッダーはプロットのトップの見出しです。ヘッダーテキストはヘッダーテキストエリアに 入力できます。

ベースラインは視覚的にピークまたは波形を定義するために引かれます。

スクリーンオプションはプリンターオプションとは無関係です。

プリンター

ベッダー、軸、ベースライン、パラメータ、結果をスクリーン上で選択的にオン、オフできます。 プリンターオプションはスクリーンオプションとは無関係です。

軸、反転

選択的にXYグリッド、XY反転のオン、オフができます。

XY 反転は XY 軸の極性を変更できます。これは一時的な変更に使用します。 XY 軸極性を デフォルトに変更したい場合、セットアップメニューのシステムコマンドを使用します。

XY 軸固定

項目をチェックすることによりXY軸を固定で、固定スケールを入力できます。X、Y軸は別々に制御できます。

XY軸固定がチェックされませんと、XYスケールは現在使用された値を持ちます。

XY 軸の整数値の印を付けるために、XY 軸は入力した正確なスケールで固定できないことがあります。

XY タイトル

各電気化学テクニックの場合、システムはデフォルトの XY 軸タイトルを与えます。それをカスタマイズする場合、項目をチェックし、タイトルを入力します。

単位

カスタマイズしたXY軸タイトルの単位または次元を入力できます。

XY スケール

XY スケールの変更によりプロットサイズを変更できます。デフォルト XY スケールはサイズで1です。

これはパプリケーションのために必要なサイズにプロットしたい時、またはワープロに図をペーストする時、有効です。

データ

プロットしたいデータを選択します。テクニックにより、選択は変ります。現在のデータプロットコマンドを参照して下さい。

電流密度

この項目がチェックされた時、電流密度が表示されます。

電極面積

電極面積は電流密度を計算するために使用されます。

電位 対 参照電極

デフォルトにより、電位軸タイトルは Potential / V です。この項目がチェックされている場合、実験に使用される参照電極のタイプが電位軸タイトルに添付されます。例えば、電位軸は Potential / V vs SCE となります。参照電極:プロンプットした後、編集ボックスの参照電極を入力します。

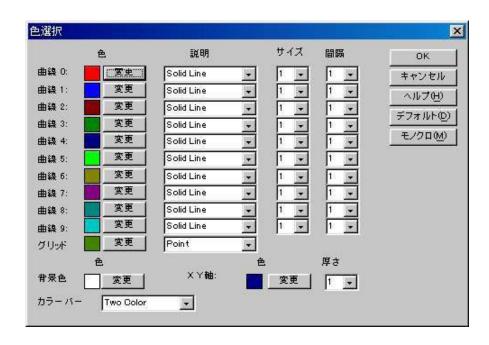
ヘッダー

これはヘッダーテキスト編集ボックスです。ヘッダーをここに入力します。プロットのトップにベッダーを表示する場合、スクリーンまたはプリンターオプションのヘッダーチェックボックスをチェックします。

注

これは注テキスト編集ボックスです。注をここに入力します。注はプロットに表示できませんが、データ情報として表示され、データファイルに保存されます。実験のコメント、実験の条件、目的を後で思い出すために利用します。

色、説明コマンド


このコマンドを使用すると、グラフプロットの色、説明が選択できます。

バックグラウンド、軸、グリッド、データ曲線の色の変更ができます。データ曲線、グリッドの説明もまた変更できます。

色、説明はプログラム終了時、プログラムの終了時に保存され、プログラムを起動する時に 読込みます。

テキストの色を変更する場合、フォントコマンドを使用して下さい。

下記図は色、説明コマンドのダイアログボックスです:

次のオプションはプロットの色、説明を選択できます。:

曲線#

曲線0は最近のデータを表します。曲線 $1 \sim 9$ は多重プロット用です。多重された曲線はここで定義された順番の色が使用されます。

色

データ曲線、グリッド、軸、バックグラウンドの色を選択できます。色を変更する場合、変更プッシュボタンを押します。システムは色ダイアログボックスを表示し、色が選択できます。色ダイアログボックスについての詳細を知りたい場合、ウィンドウズユーザーズマニュアルを参照して下さい。

テキストの色を変更する場合、フォントコマンドを使用して下さい。

説明

データ曲線、グリッド説明を選択できます。説明はライン、ポイント、○、他のパターンになります。

曲線またはグリッドの説明用にポイントが選択された時、あるプリンターまたはプロッターでは表示されないかもしれません。例えば、HP社レザージェット IV は HPGL モードでドットを印字しませんが、ラスターモードではドットを印字します。プリンターの最適な組み合せについてはプリンターのマニュアルを参照して下さい。

サイズ

説明のサイズまたはラインの厚みを指定できます。

間隔

プロットのデータ密度を変更できます。オリジナルデータ密度は1です。大きな間隔はデータポイント密度を低下します。これは多重プロットと異なる説明を使用した時、有効です。

デフォルト

このプッシュボタンを押しますと、全ての色、説明をシステムのデフォルトにリセットします。

フォントコマンド

このコマンドを使用すると、プロットで使用されたテキストのフォント(スタイル、サイズ、色)を選択できます。

プリンターのY軸タイトル回転角度を選択できます。

フォントはプログラムを終了した時、保存されます。プログラムを再スタートした時、再読 込みされます。

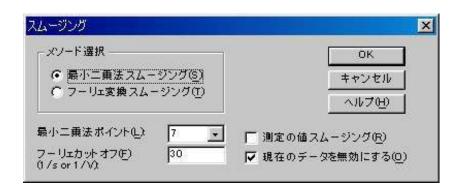
下記図はフォント選択ダイアログボックスです:

フォント、スタイル、サイズ、テキストの色を変更する場合、変更プッシュボタンを押します。 Y 軸は下からトップまで移動できますが、プリンターにより文字の回転角度を定義できます。 例えば、HP 社レザージェット IV は希望の回転を 90° として定義できますが、IBM、Lexmark 4039 12R は 270° として定義されます。 Y 軸タイトルが上から下に変わった場合、選択を変更します。

システムはフォントダイアログボックスを表示し、フォントを選択できます。フォントについて更に詳細を知りたい場合、ウィンドウズユーザーマニュアルを参照して下さい。

デフォルトプッシュボタンを押しますと、全てのフォントはシステムのデフォルトにリセットされます。

クリップボードへのコピーコマンド


このコマンドを使用しますと、プロットをクリップボードにコピーできます。そのデータをワープロ等にペーストできます。

このコマンドは測定またはデジタルシュミレーションを実行中にも働きます。

スムージングコマンド

このコマンドを使用すると、現在のデータのスムージングを行います。 スムージングのダイアログボックスを示します。:

スムージングを行う場合、OK プッシュボタンをクリックします。 次のオプションはスムージングのパラメータとモードを選択できます。:

モードの選択

スムージングモードの選択:最小二乗法またはフーリエ変換スムージング

最小二乗法

Savitzky、Golay アルゴリズムはこのテクニックで使用されます。5~49 までの奇数ポイントはスムージングで使用されます。ポイント数が多いと、スムージング効果は良くなりますが、歪みも大きくなります。

Savitzky、Golay アルゴリズムの詳細については、"Smoothing and Differentiation of Data by Simplified Least Squares Procedures", Anal. Chem., 36, 1627-1639 (1964) を参照して下さい。

FT カットオフ (1/s or 1/V)

フィルターカットオフ周波数を指定します。タイムベース実験の場合、CA, CC, TB..., を含み、1/s または Hz は単位です。ボルタンメトリーの場合、単位は 1/V.、物理的な意味は 1 ボルトのポテンシャル範囲でシグナルサイクルが何回許容されるかです。カットオフが低いと、スムージング効果は良好ですが、歪みを生じます。

フーリエ変換スムージングは D.E. Smith 等により提案された方法によって行われます。アルゴリズムの詳細については "Some Observations on Digital Smoothing of Electroanalytical Data Based on the Fourier Transformation", Anal. Chem., 45, 277-284 (1973) を参照して下さい。

一般的に、フーリエ変換スムージングは非常に効果的です。シグナルバンドはノイズバンド と分離される場合、歪みも小さくなります。一方この方法は相対的に時間がかかります。

測定後のスムージング

このボックスがチェックされると、測定後、自動的にスムージングされます。TAFEL, BE, IMPのようなテクニックではスムージングはできません。 このオプションはコントロールメニュー測定状況コマンドからオン、オフできます。

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されます。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジ

ナルデータは再度現れます。

微分コマンド

このコマンドを使用すると、現在のデータを微分します。

一次微分すると Y 軸は Y 単位 /X 単位となります。例えば、ボルタンメトリーの場合、Y 軸は A/V となり、i-t の場合、Y 軸は A/S となります。新しい単位は明確に表示されないが、注意してください。

システムは微分ダイアログボックスを表示します。

微分を行う場合、OK プッシュボタンをクリックします。

次のオプションは微分の次数、パラメータを選択できます:

次数の選択

微分の次数、一次、二次、三次、四次、または五次を選択します。

最小二乗法

Savitzky、Golay アルゴリズムで微分を行う時に使用されます。5~49までのポイントの奇数が使用されます。微分は高周波数ノイズを増幅する傾向がありますので、相対的に大きな値が考慮されます。ポイント数が多いと、微分データのノイズは少なくなりますが、歪みは大きくなります。

Savitzky、Golay アルゴリズムの詳細については "Smoothing and Differentiation of Data by Simplified Least Squares Procedures", Anal. Chem., 36, 1627-1639 (1964) を参照して下さい。

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されます。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジナルデータは再度現れます。

積分コマンド

このコマンドを使用すると、現在のデータを積分します。

積分すると Y 軸は Y 単位 x X 単位となります。例えば、ボルタンメトリーの場合、Y 軸は AV となり、i-t の場合、Y 軸は AS(クーロン)となります。新しい単位は明確に表示されないが、注意してください。

システムは積分ダイアログボックスを表示します。

積分を行う場合、OK プッシュボタンをクリックします。 次のオプションは積分のパラメータの選択を行います。:

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されます。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジナルデータは再度現れます。

半積分、半微分コマンド

このコマンドを使用すると、現在のデータを半積分または半微分できます。

半微分、半積分は有効です。半微分を使用すると拡散のピークをガウスピークに変換でき、 解像度の向上と測定が容易になります。拡散ピークをシクモイド波形に変換し、時間一独立し た定常状態プラトーになります。電流一電圧半対数分析を含むポーラログラフィック理論デー タ解釈に使用できます。

システムは半積分、半微分ダイアログボックスを表示します。

半積分または半微分を行う場合、OK プッシュボタンをクリックします。

次のオプションは畳み込みのパラメータを選択できます。:

次数の選択

半積分または半微分の一方を選択します。

現在のデータを無効

このボックスをチェックすると、現在のデータは畳み込みされたデータに交換されます。さもなければ、畳み込みされたデータは表示されますが、現在のデータを無効にしません。この場合、グラフィックメニューの現在のデータプロットコマンドが実行され、オリジナルデータが再度現れます。

書き込みコマンド

このコマンドを使用すると、現在のデータに更にデータポイントを挿入できます。 システムは書き込みダイアログボックスを表示します:

書き込みを行う場合、OK プッシュボタンをクリックします。 次のオプションは書き込みパラメータを選択できます:

データ挿入密度

数値を大きくすると、最終データ密度は高くなります。データポイント数がメモリーサイズ を超えた時、警告が表れ、コマンドは終了します。データ挿入密度は2の指数のみです。フー リエ変換がこの場合、使用されます。

現在のデータ無効

このボックスをチェックされますと、現在のデータは書き込みデータに交換されます。さもなければ、書き込みデータは表示されますが、現在のデータを無効にしません。この場合、グラフィックメニューの現在のデータプロットコマンドを実行した時、オリジナルデータが再度現れます。

ベースラインフィッティング&減算コマンド

このコマンドを使用しますと、ベースラインフィッティングと現在のデータからフィッティング曲線を差し引きます。

ベースラインフィッティング & 減算を行う場合、2 つのピークの足もとの電位を特定する必要があります。また、アルゴリズムとフィッティング次数する必要があります。ベースラインフィッティング & 減算は限定したピークのみに働きます。全てのテクニックには働きません。

ベースラインフィッティング & 減算ダイアログボックスを表示します:

From	0	— то	0	OK T. N. S.II
From	0	— _{То}	O	キャンセル
From	0	То	0	ヘルプ(近)
From	0	— то	o	ベースライン参
From	0	To	0	差分参照
ニスライ				

CV データのようにデータセグメントが多数ある場合、グラフィックスメニューのグラフオプションコマンドを用いて操作できるデータ組を選択できます。

次のオプションはフィッティングパラメータを選択でき、データの各種条件も保存できます。 ピーク範囲

ベースラインをフィットする時、ピークのデータポイントは避けなければなりません。2つのピーク範囲を指定する必要があります。ベースラインフィッテングか理想的でない場合、ピーク範囲の調整または多項式の次数の調整が必要かもしれません。

ピークが幾つかある場合、ピークの数に応じてピーク範囲を設定します。ベースラインフィッティングに使用しない全体の電位または時間範囲を指定しします。最大5ピーク範囲まで設定できます。

ベースラインフィッティングアルゴリズム次数

フィッティングのアルゴリズムと次数を指定する必要があります。フィッティングには2つのアルゴリズムがあります。直交最小二乗法と最小二乗法があります。2つとも多項式フィッティングに基づいています。多項式の次数はベースラインの波形に関係します。直線の場合は1次次数, aX+bです。二次次数フィッティングでは aX^2+bX+c となります。最適なフィッティングを行いたい場合、フィッティングアルゴリズムを調整し、ピーク電位範囲の調整が必要です。

オリジナルデータを無視するために保存

OK ボタンをクリックする時、何もせずを選択した場合、スクリーンにはオリジナルデータとフィットしたベースラインが表示されます。オリジナルデータは変更されません。差分を選択した場合、オリジナルデータは差分データに交換されます。差分データはオリジナルデータからベースラインデータを引き算して得られます。ベースラインを選択した場合、フィットしたベースラインデータが保存されます。

ベースライン参照

このボタンを押しますと、フィッテング結果を評価するためにオリジナルデータとフィットしたベースラインを参照できます。フィッティングの結果を確認する上で重要な操作です。ピークの定義ラインが視覚を妨げるようであれば、グラフィックスメニューのグラフオプションのスクリーンベースラインをオフにします。

オリジナルデータは変更されません。グラフィックスメニューの現在のデータをプロットを 呼び出せば、オリジナルデータが表れます。

差分参照

このボタンを押しますと、フィッテング結果を評価するためにオリジナルデータとフィットしたベースラインを表示します。これはフィッティングの結果を評価する上で役に立ちます。

オリジナルデータは変更されません。グラフィックスメニューの現在のデータをプロットを呼び出せば、オリジナルデータが表れます。

ベースライン補正コマンド

このコマンドを使用しますと、現在のデータの視覚的にベースラインを補正します。ベースラインの勾配の補償、曲線のdcレベルのシフトができます。

ベースラインの補正コマンドは一度のみ使用できます。一回以上ベースラインを補償、シフトさせる場合、繰り返しこのコマンドを実行します。

システムはベースライン補正ダイアログボックスを表示します:

ベースライン補正する場合、最初に OK プッシュボタンをクリックします。マウスカーソルは上矢印に変わります。

ベースライン勾配を補償する場合、開始点でマウスボタンを押し、マウスをドラッグし、ベースラインを形成するポイントに広げます。マウスボタンを離しますと、このラインはデータから差し引かれます。X軸の補償範囲はラインが引かれる範囲です。

dc レベルをシフトする場合、水平ラインを引くためにマウスを使用します。このラインが曲線のゼロラインとなります。dc レベルのシフトは全体の曲線に適用されます。X 軸範囲をカバーするラインを引く必要はありません。

CV データのように一つ以上のセグメントのデータが得られる場合、グラフィックメニューのグラフオプションコマンドを使用して、操作できるデータセットを選択できます。

ベースライン補正コマンドは一度だけ起動できます。一回以上ベースラインシフトまたは補償を行う場合、繰り返しこのコマンドを使用します。

次のオプションは現在のデータがベースライン補正データに交換されたかどうかを調べることができます。

現在のデータを無効

このボックスをチェックすると、現在のデータはベースライン補正データに交換されます。 さもなければ、ベースライン補正データは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデータが再表示されます。

データポイント除去コマンド

このコマンドを使用すると、現在のデータの中で必要ないデータポイントを除去できます。 最初または最後にデータポイントを除去できます。

システムはデータポイント除去ダイアログボックスを表示します:

'ータポイント除去		
最初のデータポイント除去(B)	0	ок
最終のデータポイント除去(E)	0	キャンセル
▼ 現在のデータを無視(Q)		ヘルプ(円)

必要のないデータポイントを除去する場合、OK プッシュボタンをクリックします。 次のオプションはデータポイント除去のパラメータの選択ができます。:

最初のデータポイントの除去

データの最初にポイントを除去する場合、チェックボックスはチェックしなければなりません。編集ボックスで除去するデータポイント数を入力します。チェックボックスが未チェックの場合、または除去するデータポイントの数がゼロの場合、本項目は起動しません。

最終データポイントの除去

データの最終点でのポイントを除去する場合、編集ボックスで、チェックボックスはチェックしなければなりません。編集ボックスで除去するデータポイント数を入力します。チェックボックスが未チェックの場合、または除去するデータポイントの数がゼロの場合、本項目は起動しません。

現在のデータを無効

このボックスをチェックすると、現在のデータはデータポイント除去後、新しいデータに 交換されます。さもなければ新しいデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナ ルデータが再表示されます。

データポイント修正コマンド

このコマンドは、現在アクティブデータのデータポイントを画像的に変更するコマンドで す。不正な水銀滴等のためにデータポイントの修正が行えます。

システムはデータポイント修正ダイアログボックスを表示します:

データポイントを修正する場合、最初にOKプッシュボタンをクリックします。マウスカーソルは上矢印カーソルに変わります。

データ表示範囲内でマウスカーソルを移動する時、十字カーソルはマウスカーソルのX軸部分に相当するデータポイントに表われます。変更したいデータポイントを選択するために水平にマウスを移動します。十字カーソールが選択したポイントに表れた時、マウスボタンを押します。データポイントを移動したい方向に上下にマウスをドラッグします。十字カーソルはそれに相当して上下に移動します。十字カーソルが変更したいデータポイントの位置した時、マウスボタンを離します。古いポイントは消去され、新しいポイントが新しい位置に表れます。

次のオプションは修正したいデータセットの選択、現在アクティブデータを修正したデータで上書きが行えます。

データセット

変更したいデータセットを選択します。使用する電気化学テクニックによって選択します。

現在のデータを無効

このボックスをチェックすると、現在のデータはデータポイント修正後、新しいデータに交換されます。さもなければ新しいデータは表示されますが、現在のデータを無効にしません。この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデータが再表示されます。

バックグラウンド減算コマンド

このコマンドはデータセット2組の差をとります。最初にブランクの溶液を測定し、データファイルを保存します。次に、サンプルを測定します。バックグラウンド減算を行うためにこのコマンドを使用します。

バックグラウンド減算を行う場合、バックグラウンドデータは同じ実験タイプ、同じXデータ配列にしなければなりません。さもなければ、エラーメッセージが発生し、コマンドが終了します。

システムはバックグラウンド減算ダイアログボックスを表示し、現在のデータから引算をするバックグラウンドデータファイルを選択できます。

次のオプションは選択したいファイルを指定できます。:

ファイル名

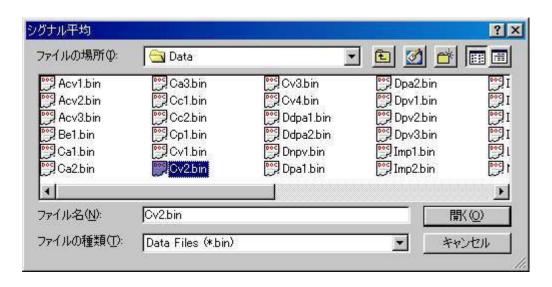
ファイル名を選択します。拡張子を入力する必要はありません。システムは自動的にファイル名に拡張子を付けます。

ファイルタイプの一覧

ファイルタイプを選択します。 "bin"(バイナリーデータファイル)が利用できます。

ドライブ

ファイルを保存するドライブを選択します。


ディレクトリー

ファイルを保存するディレクトリーを選択します。

シグナル平均コマンド

このコマンドを使用すると現在のデータ、ディスクデータファイルをシグナル平均します。 現在のデータは常に加わります。いくつかのデータセットは一緒に加わり、データセットの数 で分割されます。データセットが現在のデータと X 配列が異なる場合、エラーメッセージが発 生し、このデータセットは無視されます。

システムはシグナル平均ダイアログボックスを表示し、シグナル平均用データファイルを選択できます。

次のオプションは選択したいファイルを指定できます。:

ファイル名

ファイル名を選択します。拡張子を入力する必要はありません。システムは自動的にファイル名に拡張子を付けます。多数のファイルを選択する場合、選択したいファイル名にマウスを移動し、Ctrl キーを押しながらマウスの左ボタンをクリックします。

ファイルタイプの一覧

ファイルタイプを選択します。 "bin"(バイナリーデータファイル)が利用できます。

ドライブ

ファイルを保存するドライブを選択します。

ディレクトリー

ファイルを保存するディレクトリーを選択します。

数学操作コマンド

このコマンドを使用すると、現在のデータを数学処理できます。X、Y配列上で作業できます。 許容された操作は加算、減算、乗算、除算、自然対数、対数、二乗、平方根、逆数です。

システムは数学操作ダイアログボックスを表示します:

数学操作を行なう場合、OK プッシュボタンをクリックします。 次のオプションは操作のタイプ、データ配列を選択できます。:

操作の選択

データを適用したい操作の選択を行ないます。加算、減算、乗算、除算が選択された場合、操作方法を決めなければなりません。

データの選択

操作するためにXデータまたはYデータ配列のどちらかを選択できます。

現在のデータを無効

このボックスをチェックすると、現在のデータは数学操作されたデータに交換されます。さもなければ、数学操作されたデータは表示されますが、現在のデータを無効にしません。この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデータが再表示されます。

フーリエスペクトルコマンド

このコマンドを使用して、現在のデータのフーリエスペクトルを得ることができます。 システムはフーリエスペトクルダイアログボックスを表示します:

フーリエスペトクルを作る場合、OK プッシュボタンをクリックします。 次のオプションはフーリエスペトクルを作るためにパラメータの選択ができます。:

Xスケール

フーリエスペトクルの X データ配列は n 成分、1/s スケールまたは 1/V スケールになります。 n 成分は汎用のケースです。全てのテクニックにて利用できます。その物理的な意味は実験パラメータに応じて見出されます。1/s、1/V は明らかに物理的な意味があります。タイムベース 実験の場合、1/s が使用されます、そして 1/V は有効ではありません。ボルタンメトリー実験 の場合、1/V が使用されます。1/s は有効ではありません。サイクリックボルタンメトリー、リニアースィープボルタンメトリーでは 1/s、1/V 両方が使用できます。

Yスケール

Y データ配列はフーリエ係数です。リニアースケールまたは対数スケールのどちらかを選択します。

現在のデータの無効

このボックスをチェックすると、現在のデータはフーリエスペクトルデータに交換されます。 さもなければ、フーリエスペクトルは表示されますが、現在のデータを無効にしません。この 場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデー タが再表示されます。

キャリブレーション曲線コマンド

このコマンドはキャリブレーション曲線を作成するコマンドです。システムはキャリブレーション曲線ダイアログボックスを表示します。

	濃度	ピーク高さ		ОК
スタンダード	100	2.391 e-007		キャンセル
マタンダード	200	4.782e-007		11.177000000
マタンダード	300	7.023e-007	スロープ: 0	へルプ(担)
スタンダード	400	9.272e-007	切片: 0	読込み(<u>R</u>)
スタンダード	500	1.154e-006	係数: 0	保存(S)
マタンダード	0	0		
知物質	0	5.375e-007		計算②
軸タイトル:	Concentration		X軸単位(U), ppb	プロット(円)
軸タイトル::	Peak Current		Y軸単位(t) A	
ッダー	Ou in wate	ř		
i意(N):	E			

次のオプションはキャリブレーション曲線計算またはプロット用のデータ入力が行えます。

スタンダード#

スタンダード溶液から得られるピーク高さ/電流、濃度を入力します。

未知物質

未知物質濃度計算するために未知物質のピーク高さを入力します。

X軸タイトル

プロットする X 軸タイトル (濃度)を入力します。

X 軸単位

プロットする X 軸単位または次元 (ppm, または M) を入力する

Y軸タイトル

プロットする Y 軸タイトル(ピーク電流)を入力します。

Y軸単位

プロットする信号単位または次元(A)を入力する。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットの上部にヘッダーを表示させる場合、グラフオプション コマンドを使用して、ヘッダーチェックボックスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざれませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータの条件、目的について参照できます。

読込み

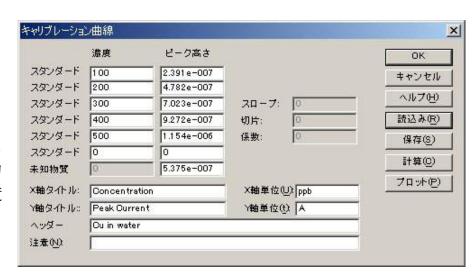
保存したデータを読み込むためのコマンドです。

保存

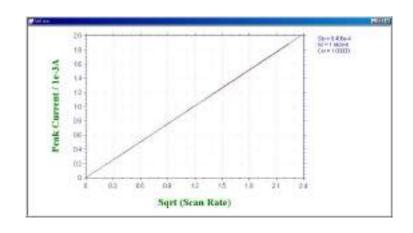
データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒に保存されます。

計算

キャリブレーション曲線のスロープ、切片、係数を計算するためのコマンドです。未知物質のピーク高さを入力すると、未知物質濃度も算出されます。


プロット

キャリブレーション曲線をプロットするためのコマンドです。


プロットはデータ範囲に応じて自動的にスケーリングされます。スケールを固定する場合、 グラフオプション コマンドを使用して下さい。

操作法

このコマンドを用いると、キャリブレーション曲線(検量線)を作成することができます。 各濃度で測定した際のピーク電流値をダイアログボックス内に入力してください。入力後計算をクリックし未知濃度のピーク高さを入力すると、濃度が自動的に計算されます。

プロットをクリックすると検量線を作成することができます。検量線の傾き、切片、相関係数、 未知濃度のサンプル濃度が右上に表示されます。検量線で得られた傾きと切片は他のコマンド でも使用しますので必要な場合は記録してください。

スタンダード添加コマンド

このコマンドを用いてスタンダード添加法による未知物質濃度のを算出するためのコマンドです。システムはスタンダード添加ダイアロッグボックスを表示します。

	濃度	ピーク高さ			OK
未知物質:	0	3.425e-007	スローブ:		キャンセル
新加 1 :	100	5.629e-007		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
参加 2 :	200	7.961e-007			ヘルプ(円)
新加 3:	300	1.033e-006	係數:	0	読込み(<u>R</u>)
参加 4:	0	0			保存(<u>S</u>)
(軸タイトル:	Concentration Peak current		X調菓倅(f) A X調菓倅(f) bbp	ppb	計算(C)
軸タイトル:				A	
ヘッダー	Pb in wate	r			プロット(円)
主意(N)					

スタンダード添加法の場合、最初に未知物質を測定し、ピーク高さを記録します。次にスタンダード溶液を添加します。添加を行いながら、ピーク高さを再度測定します。通常、添加量はサンプル組成を維持するために総容量以下にしなければなりません。増加濃度は未知物質と比較します。

次のオプションは未知物質のキャリブレーション曲線計算またはプロット用のデータ入力が行えます。

未知濃度

未知物質濃度計算用のピーク高さを入力する

添加#

スタンダード溶液を添加した後、濃度とピーク高さ/電流を入力します。

X軸タイトル

プロットする X 軸タイトル(濃度)を入力します。

X 軸単位

プロットする X 軸単位または次元 (ppm, または M) を入力する

Y軸タイトル

プロットする Y 軸タイトル (ピーク電流)を入力します。

Y軸単位

プロットする信号単位または次元(A)を入力する。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上部にヘッダーを表示させる場合、グラフオプションコマンドを使用して、ヘッダーチェックボックスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざれませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータの条件、目的について参照できます。

読込み

保存したデータを読み込むためのコマンドです。

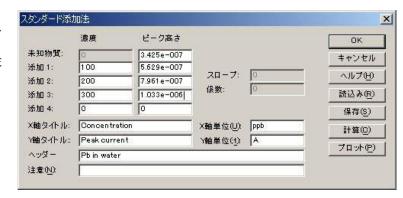
保存

データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒に保存されます。

計算

キャリブレーション曲線のスロープ、切片、係数を計算するためのコマンドです。未知物質のピーク高さが得られたならば、未知物質濃度も算出されます。

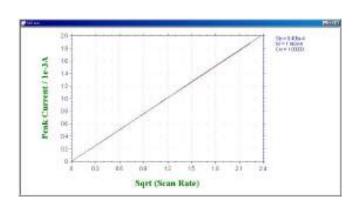
プロット


キャリブレーション曲線をプロットするためのコマンドです。

プロットはデータ範囲に応じて自動的にスケーリングされます。スケールを固定する場合、グラフオプション コマンドを使用して下さい。

操作法

このコマンドを用いるとスタンダード 添加法により、未知濃度のサンプル濃 度を計算できます。


まずはじめに未知濃度サンプルのピーク高さを記録してください。その後、標準溶液を数回添加し、その際のピーク高さを記録してください。添加する標準溶液の量はマトリックス効果など

を避けるためできるだけ少量にして下さい。

未知濃度のサンプルのピーク高さと、添加後のピーク高さを入力後、計算をクリックすると自動的に未知濃度が計算されます。プロットをクリックすると、標準添加曲線を描くことができます。

プロットをクリックすると、標準添加曲線を描くことができます。スロープ、相関係数および濃度が右上に表示されます。

データファイルレポートコマンド

このコマンドを用いて保存したデータファイル用のレポートを作成します。 システムはデータファイルレポートダイアログボックス を表示します。

次のオプションはキャリブレーション曲線のピークポテンシャル窓、スロープ、切片を入力 し、レポート用のデータファイルを選択できます。

成分

調べる成分名を入力します。最大4成分探索、レポートできます。

Ep From and Ep To

Ep From、Ep To のピークポテンシャル範囲を入力します。プログラムはピークを探索する時、特定範囲の第一のピークが選択されます。異なる成分の場合、別の値を入力しなければなりません。

勾配.

成分のキャリブレーション曲線の勾配を入力します。成分濃度を算出するのに使用されます。各成分の独自の勾配を有します。濃度レポートが選択され、勾配がゼロの場合、警告が表れます。

切片

成分のキャリブレーション曲線の切片を入力します。成分濃度を算出するのに使用されます。 各成分の独自の切片を有します。

ピーク波形

データの特性に応じてピーク波形を選択できます。ピーク波形はガウス、拡散またはジクモイド波形です。

データ形式

濃度をレポートするためにオリジナルデータ、半微分、一次微分を選択できます。

種の数

データファイルレポート用に種の数を入力します。

濃度単位

濃度単位、または次元 (ppm または M) を入力します。

レポートファイル名

レポートテキストファイルを保存する場合、レポートファイル名を入力します。ファイル名が存在する場合、無効の警告が表れます。ファイル名が入力されませんと、レポートは保存されません。

レポートデータ形式

濃度またはピーク電流をレポートにします。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上部にヘッダーを表示させる場合、グラフオプションコマンドを使用して、ヘッダーチェックボックスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざれませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータの条件、目的について参照できます。

読込み

保存したデータを読み込むためのコマンドです。

保存

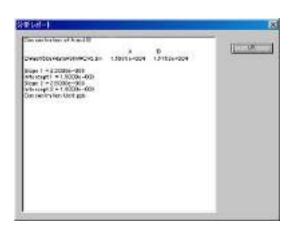
データ保存するためのコマンドです。 XY タイトル、単位、ヘッダー、注意がデー タと一緒に保存されます。

レポート

このコマンドを用いてデータファイルレポートを作成します。

操作法

このコマンドを用いると、ボルタモグラムの指定した電位範囲内に在るサンプルピークを自動的に検出し、それらのピーク高さ(濃度)を表示します。レポートを行う前に、検量線からスロープと切片を出しておく必要があります。


ピークが在る電位範囲を指定して下さい。異なった物質についてそれぞれレポートを行う場合には、それぞれの電位範囲と、傾きおよび切片(検量線から)を入力して下さい。

AとBの電位範囲を下記のように入力します。

ピーク形状は通常 Diffusive を、データは Original を選択してください。微小電極の場合、ピーク形状は Sygmoidal、容量電流の大きな電極は Gausian を選択して下さい。

レポートをクリックしレポートを行いたいデータを選択してください。分析レポートとして下 図のように各ピークの濃度(電流値)が自動的に計算されます。

時間依存コマンド

このコマンドを用いますと、保存データファイルからピークの時間依存または濃度のレポートまたはプロットを作成します。

このコマンドは保存データファイルからデータを読込み、ピークを探索します。ピーク高さまたは濃度は時間依存レポート用に使用されます。全ての有効データファイル(特定のピークを含む)は実景測定時間に応じて保存されます。最初に開始時間が割当てられ、残りの実験時間は開始時間を差し引いて得られます。

システムは時間依存ダイアログボックスを表示します。:

次のオプションはキャリブレーション曲線のピークポテンシャル窓、スロープ、切片を入力し、 時間依存レポートまたはプロット用のデータファイルを選択できます。

成分

調べる成分名を入力します。最大4成分探索、レポートできます。

Ep From and Ep To

Ep From、Ep To のピークポテンシャル範囲を入力します。プログラムはピークを探索する時、特定の範囲の第一のピークが選択されます。異なる成分の場合、別の値を入力しなければなりません。

勾配

成分のキャリブレーション曲線の勾配を入力します。成分濃度を算出するのに使用されます。 各成分の独自の勾配を有します。濃度レポートが選択され、勾配がゼロの場合、警告が表れます。

切片

成分のキャリブレーション曲線の切片を入力します。成分濃度を算出するのに使用されます。 各成分の独自の切片を有します。

ピーク波形

データの特性に応じてピーク波形を選択できます。ピーク波形はガウス、拡散またはジクモイド波形です。

データ形式

濃度をレポートするためにオリジナルデータ、半微分、一次微分を選択できます。

Y Axis Title

プロットする Y 軸タイトル(濃度またはピーク電流)を入力します。

濃度単位

濃度単位、または次元 (ppm または M) を入力します。

レポート名

レポートテキストファイルを保存する場合、レポートファイル名を入力します。ファイル名が存在する場合、無効の警告が表れます。ファイル名が入力されませんと、レポートは保存されません。

レポートデータ形式

濃度またはピーク電流をレポートにします。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上部にヘッダーを表示させる場合、グラフオプションコマンドを使用して、ヘッダーチェックボックスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざれませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータの条件、目的について参照できます。

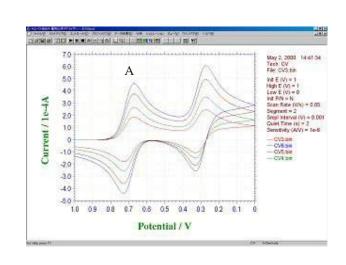
読込み

保存したデータを読み込むためのコマンドです。

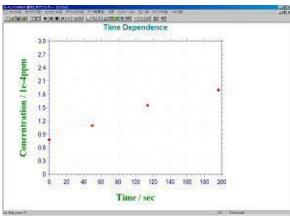
保存

データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒に保存されます。

レポート


このコマンドを用いてデータファイルレポートを作成します。

プロット

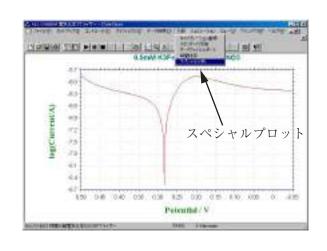

このコマンドを用いますと、時間依存プロットを作成します。

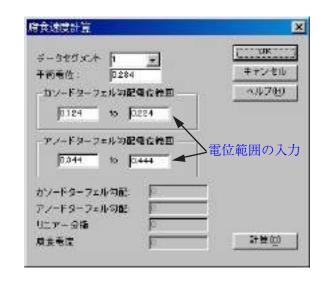
操作法

このコマンドを用いると指定した電位範囲内に在るピークの経時的な濃度変化をプロットすることができます。右記のような4つのボルタモグラムAのピークの経時変化を見たい場合は、まずピークの在る電位範囲を指定し、検量線から得られた傾きと切片をダイアログボックスに入力します。プロットをクリックすると自動的に濃度計算を行いグラフを描きます。X軸の時間は最初に測定を行った時間(ボルタモグラムの右上に示される)を0とし、それからの経過時間で示されます。

スペシャルプロットについて

スペシャルプロットはターフェルプロットを解析します。特に、腐食電流、分極抵抗を算出できます。ターフェルプロットは腐食速度の電気化学計測法として利用されています。ターフェルプロットは分極曲線 (logI vs E) の直線部を腐食電位に外挿して腐食電流を求めることができます。最初に、ターフェル測定したデータを読込みます。


そしてデータ選択しますと、ターフェルプロットが表示されます。


ターフェル式
$$h = \frac{RT}{a \ nF} \ln i_0 - \frac{RT}{a \ nF} \ln i$$

(n:腐食電位)

次にターフェルプロットを解析するために、メニューコマンドの分析をクリックしますと、スペシャルプロットコマンドが表れます。それを選択します。

本コマンドを選択しますと、腐食速度計算画面が現れ、 平衡電位、各カソード、アノードの電位範囲も自動的 に表示されます。そして、ターフェルプロットを参照 しながら、アノード、キャソードの腐食電位の直線範 囲を入力します。

データセグメント

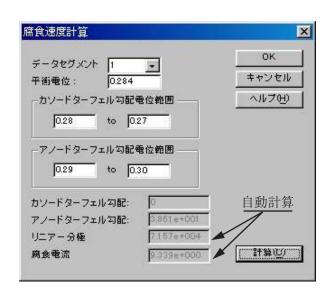
データセグメントが1つ以上ある場合、腐食速度を計算するデータセグメントを指定して下さい。

平衡電位E

プログラムは電流がゼロまたは最小値の電位を検索し、平衡電位に相当する電位を割り当てます。プログラムが報告したでデフォルト値に変更して下さい。

カソードターフェル勾配電位範囲

カソードターフェル勾配電位範囲は平衡電位より - 60mV でスタートします。100mV の範囲を有します。この電位範囲は変更できます。


アノードターフェル勾配電位範囲

アノードターフェル勾配電位範囲は平衡電位より + 60 mV でスタートします。 100 mV の範囲に拡大します。この電位範囲は変更できます。

計算

データセグメント、平衡電位、アノード、カソード電位範囲を設定したら、計算ボタンをクリックしますとアノード、カソードターフェル勾配、直線分極抵抗(Ω)、腐食電流が得られます(A)。

そして、計算ボタンをクリックしますと、分極抵抗、腐食電流は自動的に算出します。

このように簡単に必用なパラメータを求めることができます。

メカニズムコマンド

シミュレーションを行う前、反応メカニズム、各種の濃度、反応速度パラメータ、実験パラメータ、他の変数を使用します。ディスクにシミュレーションに必要な全てのパラメータの保存またはディスクからの読込みができます。平衡濃度のチェックもできます。

システムはデジタルシミュレーションダイアログボックスを表示します:

次のオプションは各種種の反応メカニズム、各種の濃度、反応速度パラメータ、実験パラメータ、他の変数を設定できます。ディスクにシミュレーションに必要な全てのパラメータの保存またはディスクからの読込みができます。平衡濃度のチェックもできます。

メカニズム編集

この編集ボックスでは反応メカニズムを編集できます。研究したいメカニズムが前もって定義されているかどうかを見るためにメカニズム選択ボックスをチェックします。メカニズム選択ボックスのメカニズムをクリックしますと、メカニズムが編集ボックスに表われます。メカニズムが前以って定義されたものと同じでも、1130,1140以外のモデルでは編集反応メカニズムは働きません。この編集ボックスに入力した時、メカニズム選択ボックスは"ユーザー入力"選択を変更します。

ユーザー入力の場合、各化学種を表すために $A \sim Z$ の文字を使用します。文字 "e" は電子移動過程を表わします。上下の文字は交換可能です。スペースは無視されます。ソフトウェアーは電子移動、一次、二次化学反応の組み合せをシミュレーションできます。最大 11 ステップ、9 化学種を受入れできます。次の反応は合法的なフォーマットです。:

このメカニズムを使用しませんと、他の操作を行う前にエラーメッセージが表われます。

メカニズム選択

前以って定義された反応メカニズムが 10 種類あります。これらは一般的な反応メカニズムです。最初の項目 "User Input" で、特定モデルのみはユーザが定義したメカニズムを入力できます。

定義したメカニズムから他のメカニズムを得ることができます。例えば、EEC, ECC, CECのメカニズムはいくつかの反応速度パラメータをゼロに定義することで ECEC メカニズムを得ることができます。不均一系の電子移動速度 k_o をゼロに定義しますと、相当する電子移動ステップには影響がありません。化学反応のフォワード、リバース反応速度定数をゼロに定義しますと、相当する化学反応には影響がありません。

前定義した反応メカニズムをクリックしますと、メカニズムはメカニズム編集ボックスに表れます。"User Input" をクリックしますと、メカニズム編集ボックスは空になります。

研究中のシステム

ソフトウェアーは拡散または吸着系の一方をシミュレーションします。拡散系はプレーナー 拡散と仮定します。吸着系はラングミュアー等温線に従い、両酸化、還元物は強く吸着される と仮定します。

無次元電流

このボックスをチェックしますと、システムは無次元電流を算出します。これは他の理論結果と比較するのに有益です。このボックスが未チェックですと、電流は濃度、電極面積、実験のタイムスケールに応じて算出されます。

平衡時の初期濃度

このボックスをチェックしますと、システムはシミュレーションが開始した時、平衡時の濃度を算出し、使用します。平衡状態は反応速度パラメータ、入力濃度に応じて算出されます。 このボックスが未チェックですと、シミュレーションは初期条件として入力濃度を使用します。

測定中の濃度プロフィールの表示

このボックスをチェックしますと、シミュレーション中ボルタングラムに沿って濃度プロファイルを表示します。これは反応メカニズムを理解する上で大変良い助けになりますし、学生教育に有益です。

ボルタングラムの場合、電流の表示スケールはパラメータコマンドにより選択された感度スケールで調べられます。電流軸が高すぎる場合、ボルタングラムはフラットラインとして表れます。電流軸スケールが低すぎますと、データポイントはあらゆる所に散ばります。しかしながら、ポスト測定データはボルタングラムを自動スケールで読めるようにします。ポスト測定データ表示に応じて、次の測定で感動を変更できます。

濃度プロファイルの場合、相対濃度と距離が使用されます。全ての種のトータル濃度はまとめてセットされます。シミュレーション中の各種の濃度はこの値を参照します。まとめた距離は 6*sqrt(Dt) にセットされます。また、D は拡散係数で、t は任意の実験のトータル時間です。濃度と距離のスケールの変更する場合、下記の2項目を参照して下さい。

濃度範囲

濃度プロフィール表示のスケールを入力します。範囲は $0.001 \sim 100,000$ です。デフォルトは 1 です。

距離範囲

濃度プロフィール表示の距離スケールを入力します。範囲は $0.001 \sim 10$ です。デフォルトは 1 です。

時間遅延ループ

デジタルシミュレーションのスピードは研究課題、使用するコンピューターの種類に依存します。スピードが速い場合、進行状況または濃度プロフィールのはっきりした変化を見ることができないかもしれません。システムがスローダウンするための二点を計算している間の時間遅延ループを挿入できます。パラメータの範囲は $0 \sim 1 \times 10^6$ です。ベストな遅延ループ数は研究課題、コンピューターのスピードで決ります。

読込みコマンド

ディスクに保存した*.sim ファイルを読込みできます。これらのファイルはシミュレーションに必要な全てのファイルを含みます。

システムは開くダイアログボックスを表示し、ファイルを選択します。

保存コマンド

このコマンドを起動するとシミュレーションに必要な全てのコマンドを保存できます。ファイルの拡張子は .sim です。

システムは名前を付けて保存ダイアログボックスを表示し、ファイル名を付けます。

実験変数コマンド

シミュレーション用の実験パラメータを設定するためにこのプッシュボタンを押します。

セットアップメニューのパラメータコマンドを通じて実験パラメータを変更できます。

システムはサイクリックボルタンメトリーパラメータダイアログボックスを表示し、使用したいパラメータを選択できます。

反応速度コマンド

このコマンドは、標準不均一系速度定数、標準レドックス電位、チャージ移動係数のような 電子移動反応速度パラメータを入力できます。化学反応のフォワード、バックワード速度定数 を入力できます。

システムはポテンシャル、速度定数ダイアログボックスを表示し、反応速度パラメータを入力できます。

濃度コマンド

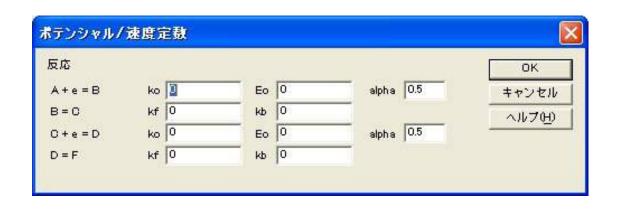
このコマンドは、各化学種の濃度、拡散係数を入力できます。

システムは拡散系の濃度、拡散係数ダイアログボックスまたは吸着系の表面濃度ダイアログボックスを表示し、濃度、拡散係数を指定できます。

平衡コマンド

このコマンドにより、任意の反応速度条件の各化学種濃度を観察できます。

システムは平衡時の濃度ダイアログボックスを表示し、平衡状態を観察できます。


変数コマンド

このコマンドにより、温度、電極面積などの変数を入力できます。

システムはシミュレーション変数ダイアログボックスを表示し、変数を入力できます。

ポテンシャル、反応速度定数ダイアログボックス

このダイアログボックスに反応速度パラメータを入力できます。

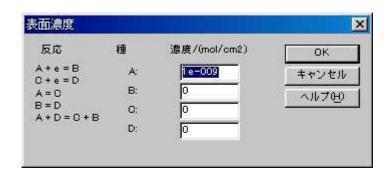
左に、反応メカニズムが一覧されます。左側に、反応メカニズムを一覧します。これは各ステップの反応です。右側には、反応のタイプに依存し、2または3パラメータの一方を利用できます。編集ボックスに最適な値を入力します。

反応が電子移動を含む場合、不均一反応速度 k_o 、標準酸化還元電位 E_o 、チャージ移動係数 α を入力できます。

化学反応を含む場合、この化学反応のフォワード、バックワード速度定数を入力します。

いくつかの反応速度パラメータは既に調べられていることが分るかもしれません。これは n種の濃度は n-1 反応プラス初期濃度により調べられます。種の数以上の式に出会うことがあります。式のいくつかは直線に関連していることがはっきりします。いくつかの反応の平衡定数は調べられ、任意に割り当てされていません。さもなければ、システムは平衡に到着できません。ソフトウェアーはこの状態を検索し、最適な反応速度定数パラメータを割当てます。一番上に、良く知られる反応速度パラメータを入れ、下に、より知られていないパラメータを入れ、ソフトウェアーに反応速度パラメータを調べさせます。調べられた平衡定数は化学反応が関わる場合、システムはバックワード速度定数を調べます。その場合もフォワード速度定数を入力しなければなりません。電子移動過程が関わる場合、システムはスタンダード酸化還元電位を調べます。更に不均一系の速度定数、 α を入力します。

濃度、拡散係数ダイアログボックス


このダイアログボックスを使用すると、濃度、拡散係数の入力が行なえます。

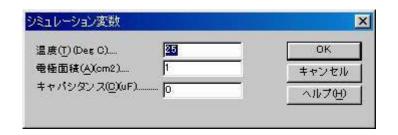
左に反応メカニズムを一覧されています。これは反応の各ステップを思い出させます。また、 反応に使用される種も一覧されます。右側には各種に相当する濃度、拡散係数を入力できます。

表面濃度ダイアログボックス

このダイアログボックスを使用すると、表面濃度が入力できます。

左に反応メカニズムが一覧されています。これは反応の各ステップを思い出させます。また、 反応に使用される種も一覧されます。右側には各種に相当する表面濃度を入力できます。

平衡時の濃度ダイアログボックス


このダイアログボックスを使用すると、平衡時の濃度が観察できます。

上に反応メカニズムを一覧しています。これは反応の各ステップを思い出させます。また、 反応に使用される種も一覧されます。右側には各種に相当する平衡時の濃度を表示されます。

シミュレーション変数ダイアログボックス

このダイアログボックスを使用すると、シミュレーションの変数を変更できます:

温度

ここには温度を入力します。熱力学、反応速度パラメータは温度の関数です。

雷極面積

平方センチメートル当りの電極面積を入力します。電流はプレーナー拡散または表面反応の 電極面積に比例します。

キャパシタンス

電極二重層のキャパシタンスを入力します。充電電流はシミュレーションでトータルの電流 応答に加算されます。

シミュレーションコマンド

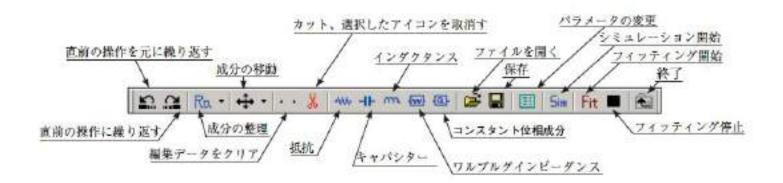
このコマンドを使用しますと、デジタルシミュレーションが行えます。

シミュレーションを行う前に、メカニズム、濃度、反応速度パラメータ、実験パラメータを 設定します。

シミュレーションを行う場合、装置とコンピューターを接続し、装置の電源を入れます。プログラムを起動する時、ハードウェアーの確認を行います。

シミュレーション中、スクリーングラフィックスをクリップボードにコピーできます。 ユーザー入力メカニズムは高級機種のみで利用できます。

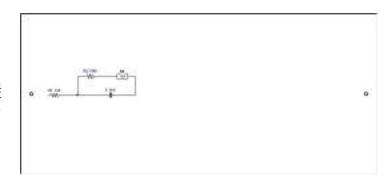
A.C. インピーダンスのシミュレーション


エーエルエス社製のモデル 660E, 760E の特定モデルのみで、インピーダンスのシミュレーションが行えるように行えます。シミュレーションの構成成分を、GUI 操作で、組み立てます。シミュレーションを行う方法について説明いたします。ソフトウェアーのアイコンをクリックし、ソフトを起動します。そして、テクニック画面を表示させ、A.C.Impedance を選択します。

OK をクリックし、次にシミュレーションのメカニズムを選択します。

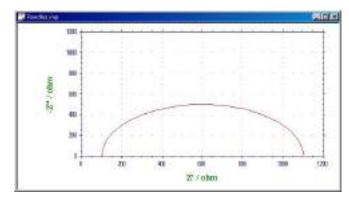
このシミュレーションは先程の電気化学シミュレーションと異なります。メニュー画面に専用のアイコンが表れ、それをマウスで選択して、必要な回路構成を描きます。シミュレーション用のアイコンが表れます。このアイコンを利用して、必要な回路を構成させます。本アイコンの各名称、機能について説明致します。

シミュレーション用のアイコンの説明

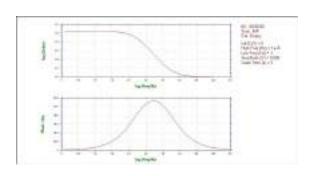

抵抗、キャパシター、インダクタンス、ワルブルグインピーダンス、コンスタント位相成分のアイコンをクリックし、必要な回路構成を作成する。最初に、右のブランクの2端子が表示している画面が表れます。

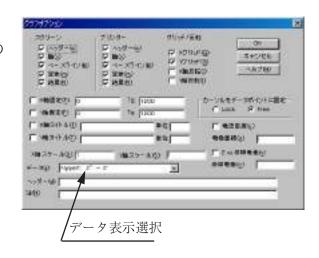
抵抗のアイコンを選択、クリックします。そしてブランク画面で再度クリックしますと抵抗の アイコンが表示されます。また、ワルブルグインピーダンスも同様な操作を行います。

必要な成分を選択し、接続します。接続する場合、成分をクリックしますと、その端子マーク(ullet)が表示され、マウスの左ボタンをホールドしながら、接続したい端子(ullet)が表れたら、左ボタンを雛します。


この時点で、回路が作成されます。右のような回路を描きましたら、配線のパターンを、マウスでクリックしますと、線が赤くなります。赤の横線は上下に移動でき、縦線左右に移動できます。そしてきれいな回路図を作成できます。

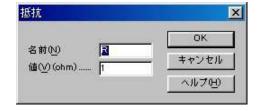
完成したシミュレーション回路図


シミュレーション開始アイコンを選択しますと、右図のようなナイキスト線図が得られます。グラフィックスのグラフオプションを選択します。そして、グラフオプションのデータら必要な形式を選択し、OK ボタンをクリックしますと、ボード線図が得られます。

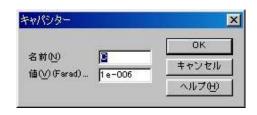


グラフィックスの中のグラフオプションを選択します。グラフオプションの画面が表れます。

グラフオプションのデータからインピーダンスの必要な表示形式を選択し、OK をクリックします。このデータ表示選択の中には Nyquist,Bode 等の各種データ形式が表示されます。


各成分のパラメータ設定

成分としては抵抗、キャパシター、インダクタンス、ワルブルグインピーダンス、スタント位相成分、インピーダンスシミュレーションパラメータから構成されています。シミュレータションを行うためのパラメータの数値を入力します。



抵抗アイコンをクリックしますと、抵抗のパラメータダイアログボックスが表示されます。

キャパシターアイコンをクリックします と、キャパシターのパラメータダイアロ グボックスが表示されます。

インダクターアイコンをクリックしますと、インダクターのパラメータダイ アログボックスが表示されます。

ワルブルグインピーダンスアイコンを クリックしますと、ワルブルグインピー ダンスのパラメータダイアログボック スが表示されます。

コンスタント位相成分アイコンをクリックしますと、コンスタント位相成分のパラメータダイアログボックスが表示されます。

インピーダンスシミュレーションパラメータイコンをクリックしますと、右図のパラメータ ダイアログボックスが表示されます。

インピーダンス成分の単位と範囲

成分	単位	範囲
抵抗 R	Ohms	$0.001 \sim 1 \times 10^{12}$
キャパシターC	Farad	$1 \times 10^{-12} \sim 1$
インダクターL	Henry	$1 \times 10^{-12} \sim 1$
ワルブルグインピーダンス W	Siemens · sec ^{1/2}	$1 \times 10^{-6} \sim 1$
一定位相成分 Q	Siemens · sec ⁿ	$1 \times 10^{-12} \sim 1,000$

インピーダンス成分の特性

成分	インピーダンス	コンダクタンス	位相
抵抗 R	$Z_R=R$	$Y_R=1/R$	周波数 - 独立
キャパシター C	$Z_{C}=-j/\omega C$	$Y_{C}=j \omega C$	$\Phi = \pi / 2$
インダクターL	$Z_L=j \omega L$	$Y_L=-J/\omega L$	$\Phi = \pi /2$
ワルブルグインピーダンス W	$Z_{W}=(1Y_{0})(j \omega)^{-1/2}$	$Y_W = Y_0(J \omega)^{1/2}$	$\Phi = \pi /4$
一定位相成分 Q	$Z_W = (1Y_0)(j \omega)^{-n}$	$Y_0 = Y0(j \omega)^n$	$\Phi = n \pi / 2, 0 < n < 1$

データ情報コマンド

このコマンドを使用すると、現在のデータ情報を観察できます。 システムはデータ情報ダイアログボックスを表示します:

ファイル名 Ovt.bin ソース: Experiment モデル: OHIXXX 日付: 10-Aus-199 時間: 14:11:32	実行テータ処理: Smoothing 1 st Derivative 2 nd Derivative 3 rd Derivative 4 th Derivative 5 th Derivative Integration Semi-Derivative Semi-Integral Interpolation Baseline Correction Data Point Removing Data Point Modifying Bkgnd Subtraction Signal Averaging X Math Operation	<u>(い</u> た <u>)</u> へルプ <u>H</u>)
ヘッダー 0.5 mM Ferrocen	in 0.1 M LiOlO4 CH3ON, 2mm Pt disk	

次の項目は現在のデータの情報を観察できます。:

ファイル名

この編集ボックスは現在のデータのファイル名を表示します。それが保存されていない場合、ファイル名は"未保存"です。

データソース

このボックスは測定またはシミュレーションのどちらかを表示します。

モデル

このボックスはデータが取得された時に使用されたモデルを表示します。

日付

このボックスはデータが取得された日付を表示します。

時間

このボックスはデータが取得された時間を表示します。

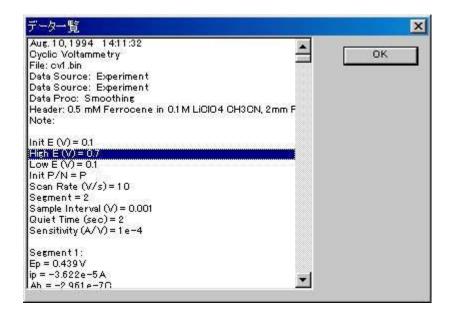
データ処理実行

このリストボックスはデータ処理のタイプが行われたことを表示します。データ処理のいくつかのタイプが実行された場合、多数の項目がチェックされます。これは以前このデータセットを実行したことを知ることができます。

ヘッダー

このボックスはヘッダーを表示し、データプロットに表われます。

注


このボックスは実験についての注を表示します。注は実験の目的、条件を知らせます。

データ一覧コマンド

このコマンドを使用すると、実験条件、結果、データの数値を一覧します。

一覧のフォーマットはファイルメニューのテキストファイルフォーマットにより変更できます。

システムはデーター覧ダイアログボックスを表示し、数値データを観察できます。必要ならば、スクロールバーまたは一覧を使用できます。一覧が長すぎる場合、データの後半部分は切りつめられます。

理論式コマンド

このコマンドを使用すると、電気化学テクニックに関連する理論式を観察できます。次の式の一覧が利用できます。理論式の詳細ならびに使用方法について "Electrochemical Methods" A.J. Bard and L.R. Faulkner, Wiley, New York, 1980 を参照して下さい。

理論式

一般式

記号と単位

リニアースィープボルタンメトリー

サイクリックボルタンメトリー

階段波ボルタンメトリー

ターフェルプロット

クロノアンペロメトリー

クロノクーロメトリー

微分パルスボルタンメトノリー

ノーマルパルスボルタンメトリー

矩形波ボルタントメリー

交流ボルタントメリー

第二高調波交流ボルタンメトリー

i-t 曲線

バルク電気分解

ハイドロダイナミック変調ボルタンメトリー

交流インピーダンス

クロノポテンショメトリー

ポテンショメトリックストリッピング分析

クロックコマンド

このコマンドを使用すると、現在の年月日、時間を観察できます。

システムはクロックダイアログボックスを表示し、日時を観察できます。時間は定期的に更 新できます。

ツールバーコマンド

ファイルを開けるなどのシステムで頻繁に使われるいくつかのコマンドをツールバーに表示、隠したりするためのコマンドです。ツールバーが表示される場合、メニューアイテムの横にチェックマークが表示されます。

ツールバーはメニューバーの下に位置し、アプリケーションウィンドウの上に表れます。ツールバーはプログラムで使用される多くのツールに簡単にアクセスできます。

アプリケーションに応じて、ビューメニューからツールバーを追加または削除します。

ステータスバーコマンド

選択メニュー項目またはツールバーボタンを押したり、ファイル状況、現在のアクティブテクニックを実行したステータスバーを表示したり、隠したりするために使用します。ステータスバーが表示された時、チェックマークがメニュー項目の次に表われます。

ステータスバーはアプリケーションウインドウの下に表われます。ステータスバーを表示したり、隠したりする場合、ビューメニューのステータスバーコマンドを用います。

スーテタスバーの左エリアはメニュー項目の動きを描写し、メニューを通じて矢印キーでナビゲートできます。このエリアはツールボタンを放す前に、押してツールバーの動きを描写するメッセージを示します。実行したくないツールバーコマンドの内容を見て、ポインターをツールバーから離し、マウスボタンを放します。

ステータスバーの右エリアはファイル状況と現在のアクティブテクニックを示します。

インジケーター 内容

ファイル名 データが保存されないまたはデータがデータ処理により変更されている場合、現在のデータのファイル名は保存、または保存しないを選択します。

テクニック 現在のアクティブテクニック

3- か 4- 電極

ヘルプトピックスコマンド

ヘルプのスクリーンを開くための表示コマンドです。スクリーンを開いて、使用するプログラム、各種リファレンス情報のステップ毎の取扱いにジャンプできます。

プログラムのある部分のヘルプを知りたい場合、状況ヘルプコマンドを用います。ツールバーの状況ヘルプボタンを選択すると、マウスポインターは矢印、疑問符に変わります。別のツールバーボタンのようにアプリケーションウィンドウのある部分でクリックしますと、クリックした項目のヘルプトピックが表れます。

電気化学テクニックの略称

ACV: A.C. Voltammetry (Phase Selective A.C. Voltammetry を含む)

交流ボルタンメトリー(位相選択交流ボルタンメトリー)

BE: Bulk Electrolysis with Coulometry

バルク電気分解--クーロメトリー

CA: Chronoamperometry

クロノアンペロメトリー

CC: Chronocoulometry

クロノクーロメトリー

CP: Chronopotentiometry

クロノポテンショメトリー

CPCR: Chronopotentiometry with Current Ramp

クロノポテンショメトリー-電流ランプ

CV: Cyclic Voltammetry

サイクリックボルタンメトリー

DDPA: Double Differential Pulse Amperometry

ダブル微分パルスアンペロメトリー

DNPV: Differential Normal Pulse Voltametry

微分ノーマルパルスボルタンメトリー

DPA: Differential Pulse Amperometry

微分パルスアンペロメトリー

DPV: Differential Pulse Voltammetry

微分パルスボルタンメトリー

HMV: Hydrodynamic Modulation Voltammetry

ハイドロダイナミック変調ボルタンメトリー

IMP: Impedance Spectroscopy

インピーダンススペクトロスコピィー

IMP-t: Impedance · Time

インピーダンス - 時間

IMP-E: Impedance · Potential

インピーダンス - 電位

i-t: i-t Curve

アンペロメトリー i-t 曲線

LSV: Linear Sweep Voltammetry

リニアースィープボルタンメトリー

NPV: Normal Pulse Voltammetry

ノーマルパルスボルタンメトリー

OCPT: Open Circuit Potential · Time

オープン回路電位 - 時間

PSA: Potentiometric Stripping Analysis

ポテンショメトリックストリッピング分析

QCM: Quartz Crystal Microbalance

水晶振動子微量天秤

SCV: Staircase Voltammetry

階段波ボルタンメトリー

SHACSV: Second Harmonic A.C. Stripping Voltammetry (Second Harmonic Phase Selective A.C. Stripping

Voltammetry)

第二高調波交流ストリッピングボルタンメトリー (第二高調波位相選択交流ストリッピングボルタンメトリーを含む)

SSF: Sweep-Step Functions

スィープーステップファンクション

STEP: Multi-Potential Steps

マルチーポテンシャルステップ

SWV: Square Wave Voltammetry

矩形波ボルタンメトリー

TAFEL: Tafel Plot

ターフェルプロット

TPA: Triple Pulse Amperometry

トリプルパルスアンペロメトリー

電気化学モデル 400C 高速水晶振動子微量天秤測定

Model 400 Time-Resolved Electrochemical Quartz Crystal Microbalance

水晶振動子微量天秤 (QCM) は超高感度質量測定機能を持った音波マイクロセンサーの一種です。例として、基本周波数 7.995MHz の水晶振動子を使用する場合(当社の装置仕様)、1Hz の正変化は表面積 0.196cm² の水晶に吸着された 1.34ng の試料に相当します。

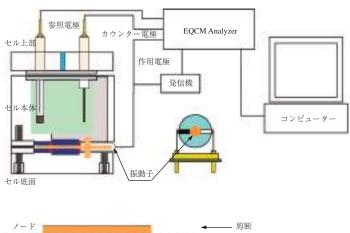
QCM とその電気化学との組み合わせ (EQCM) は結晶に沈積した金属の検出、ポリマーフィルム中のイオン移動過程の観測、バイオセンサー開発と吸着物質の吸着力学の研究に広く利用されています。EQCM の実験では作用電極における電位、電流、電荷や、周波数変化に相当する取り込み等、様々な電気化学パラメータの測定は同時に行います。モデル 400C シリーズの全てのモデルでは特定電位波形(例:サイクリックボルタンメトリー測定用の三角電位波)の応用、電流の連続測定と、周波数カウンターはパソコン制御のポテンショスタット/周波数カウンターを利用して行います。

モデル 400C シリーズは水晶振動子、周波数カウンター、高速デジタル信号発生器、高感度高分解能データ取込み回路、ポテンショスタット、ガルバノスタット(モデル 440C のみ)から構成されます。QCM とポテンショスタット、ガルバノスタットを統合させて、EQCM の測定が簡単に、便利になります。周波数直接測定を含み、モデル 400A シリーズは高速で測定が行えます。QCM の周波数信号は標準参照周波数から計算されます。このテクニックが QCM 信号のサンプリングに必要な時間を大いに減少し、QCM 信号を高速に処理します。直接計算法を使用しますと、1Hz の QCM 分解能は 1 秒のサンプリング時間が必要、0.1Hz の分解能は 10 秒のサンプリング時間が必要です。本モードは 1/1000 秒単位で QCM 信号をより良い分解能で測定することを可能にします。スキャン速度が 1V/s の時に、QCM データは記録されます。

EQCM セルに 3 つの丸いテフロンが含まれています。全体の高さは 37mm で、直径 35mm です。上部は参照電極と対電極を固定するためのセルのふたです。マニュアルパージ用の 2mm の穴が 2 つあります。真中の部分は溶液用のセルボディです。下部は組み立て用です。ねじ 4 本を使用し、下部と間中部を同時に固定します。水晶振動子は下部と真中部の間に置きます。シールは上記の 4 つのねじによって圧着させた 2 つの O リングを通します。水晶振動子の直径は 13.7mm です。金電極の直径は 5.1mm です。

仕様

ポテンショスタット		ローパス信号フィルター	自動とマニュアル設定
ガルバノスタット (モデル 44(OC)	CV と LSV スキャン速度	$0.000001 \sim 5,000 \text{V/s}$
電位範囲	-10 ∼ 10V	スキャン中の電位上昇	0.1 mV @ 1000 V/s
立ち上がり時間	< 2 μ s	CAと CC パルス幅	$0.0001 \sim 1,000 \text{ sec}$
出力電圧	± 12 V	CAと CC ステップ	320
3- または 4- 電極配置		DPV と NPV パルス幅	$0.0001 \sim 10 \text{ sec}$
電流範囲	250 mA	SWV 周波数	$1 \sim 100 \mathrm{kHz}$
参照電極入力インピーダンス	$1 \times 10^{-12} \Omega$	ACV 周波数	$1\sim10\mathrm{kHz}$
感度スケール	$1 \times 10^{-12} \sim 0.1 \text{ A/V}$ 、34 レンジ	SHACV 周波数	$1\sim5\mathrm{kHz}$
入力バイアス電流	< 50 pA	自動電位電流ゼロ化	
電流測定分解能	< 1 pA	RDE 回転制御出力	0~10 V (430C 以上)
CVの最低電位増加	100 μ V	電位と電流	アナログ出力
電位更新速度	10 MHz	セル制御	パージ、撹拌、ノック
データ取込み	16 bit @ 1M Hz	データ長	4096 K
周波数分解能	< 0.1 Hz	シャーシ寸法	$31 \text{ (W)} \times 28 \text{(D)} \times 12 \text{(H)cm}$
QCM 最高サンプリング速度	1 kHz	発信器ボックス	$6.6 \text{ (W)} \times 12 \text{(D)} \times 3.9 \text{ (H)cm}$
iR 補償	自動、マニュアル	重量	6.8Kg


モデル 400C シリーズのテクニック

機能	400C	410C	420C	430C	440C
サイクリックボルタンメトリー (CV)					
リニアスイープボルタンメトリー (LSV) &					
階段波ボルタンメトリー (SCV) #.&					
ターフェルプロット (TAFEL)					
クロノアンペロメトリー (CA)					
クロノクーロンメトリー (CC)					
微分パルスボルタンメトリー (DPV) ^{#,&}					
ノーマルパルスボルタンメトリー (NPV) ^{#,&}					
微分ノーマルパルスボルタンメトリー (DPNV) ^{#,&}					
矩形波ボルタンメトリー (SWV) &					
交流ボルタンメトリー (ACV) #,&,\$					
第 2 高調波ボルタメトリー (SHACV) ^{#,&,\$}					
アンペロメトリー l-t 曲線 (l-t)					
微分パルスアンペロメトリー (DPA)					
ダブル微分パルスアンペロメトリー (DDPA)					
トリプルパルスアンペロメトリー (TPA)					
クーロメトリーによる電気分解 (BE)					
ハイドロダイナミック変調ボルタンメトリー (HMV					
スイープ - ステップファンクション (SSF)					
マルチ - ポテンシャルステップ (STEP					
クロノポテンショメトリー (CP)					
電流ランプによるクロノポテンショメトリー CPCR)					
ポテンショメトリックストリッピング分析 (PSA)					
オープン回路電位-時間 (OCPT)					
水晶振動子微量天秤 (QCM)					
ガルバノスタット					
RDE 制御 (0 ~ 10V 出力)					
フールバージョン CV シミュレーター					
限定バージョン CV シミュレーター					
IR 補償					

- #: 関連するポラログラフィックモードは行えます。
- &: 関連するストリッピングモードは行えます。
- \$: 位相選択データは位相を利用できます。

水晶振動子は7.995MHzの周波数を有し、両面に金を蒸着してあります。金を蒸着した水晶振動子面は電解質溶液と接触し、作用電極として使用します。金の表面写真は下図を参照して下さい。

図 - 1. EQCM の組み立て図

モデル 600E シリーズのテクニック

テクニック	600E	602E	604E	606E	608E	610E	620E	630E	650E	660E
CV		•	•	•		•	•			•
LSV ^{&}	•	•	•	•	•	•	•			•
SCV #,&								•		•
TAFEL		•	•	•	•			•		•
CA	•	•		•	•		•	•	•	
CC	•			•	•		•			
DPV #,&						•	•	•	•	
NPV #,&						•	•			
DNPV #,&										
SWV ^{&}							•			
ACV #,&,\$										
SHACV #,&,\$										
i-t										•
DPA										•
DDPA										•
TPA										•
IPAD										
BE			•							•
HMV										•
SSF										•
STEP										•
IMP					•				•	
IMP-t										
IMP-E					•				•	
CP				•	•					
CPCR										
ISTEP				•	•					
ECN										
PSA				•	•					
OCPT										

#: ポーラログラフィーモードを実行できる

&: ストリッピングモードを実行できる。

\$: 位相選択データ利用可能

測定パラメータのダイナミックレンジ

パラメータ	モデル 6xxE	テクニック
電位 (V)	10 ∼ +10	
電流 (A)	$0 \sim \pm 0.25$	
感度 (A/V)	$1 \times 10^{-12} \sim 0.1$	
スキャン速度 (V/s)	$0.000001 \sim 20,000$	CV, LSV
パルス幅 (sec)	$0.0001 \sim 1000$	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング幅 (sec)	$0.0001 \sim 10$	DPV, NPV
周波数 (Hz)	$1 \sim 100,000$	SWV
周波数 (Hz)	$1 \sim 10,000$	ACV
周波数 (Hz)	$1 \sim 5,000$	SHACV
周波数 (Hz)	$0.0001 \sim 100,000$	IMP

モデル 700E シリーズバイポテンショスタットのテクニック

テクニック	700E	702E	704E	706E	708E	710E	720E	730E	750E	760E
CV										
LSV ^{&}										
SCV #,&										
TAFEL										
CA										
CC										
DPV #,&										
NPV #,&										
DNPV #,&										
SWV ^{&}										
ACV #,&,\$										
SHACV #,&,\$										
i-t										
DPA										
DDPA										
TPA										
IPAD										
BE										
HMV										
SSF										
STEP										
IMP										
IMP-t										
IMP-E										
СР										
CPCR										
ISTEP										
PSA										
ECN										
OCPT										

#: ポーラログラフィーモードを実行できる

&: ストリッピングモードを実行できる。

\$: 位相選択データ利用可能

デュアルチャンネル測定が利用できるテクニックは C V,LSV,SCV,CA,DPV,NPV,DNPV,SWV,i-t です。

測定パラメータのダイナミックレンジ

パラメータ	モデル 7xxE	テクニック
電位 (V)	10 ∼ +10	
電流 (A)	$0 \sim \pm 0.25$	(1Ch only)
電流 (A)	$0 \sim \pm 0.125$	(Dual Ch only)
感度 (A/V)	$1 \times 10^{-12} \sim 0.1$	(Both Ch)
スキャン速度 (V/s)	$0.000001 \sim 20,000$	CV, LSV
パルス幅 (sec)	$0.0001 \sim 1000$	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング幅 (sec)	$0.0001 \sim 10$	DPV, NPV
周波数 (Hz)	$1 \sim 100,000$	SWV
周波数 (Hz)	$1 \sim 10,000$	ACV
周波数 (Hz)	$1 \sim 5,000$	SHACV
周波数 (Hz)	$0.0001 \sim 100,000$	IMP

モデル 800C シリーズのテクニック

テクニック	810C/812C	820C/822C	830C/832C	840C/842C	850C/852C
サイクリックボルタンメトリー	•	•	•	•	•
リニアースィープボルタンメトリー	•	•	•	•	•
階段状ボルタンメトリー	-	-	-	-	•
ターフェルプロット	-	-	-	-	•
クロノアンペロメトリー	-	-	•	•	•
クロノクーロメトリー	-	-	•	•	•
微分パルスボルタンメトリー	-	•	•	•	•
ノーマルパルスボルタンメトリー	-		•	•	•
矩形波ボルタンメトリー	-			•	
アンペロメトリー		-		•	•
交流ボルタンメトリー	-	-	-	-	
第二高調波ボルタンメトリー	-	-	-	-	•
微分パルスアンペロメトリー		-	•	•	•
ダブル微分パルスアンペロメトリー		-	•	•	•
トリブルパルスアンペロメトリー	•	-	•	•	•
積分バルスアンペロメトリー検出	-	-	-	-	•
バルク電気分解ークーロメトリー	-	•	•	•	•
ハイドロダイナミックモジュレーション	-	-	-	-	•
ポテンショメトリックストリッピング分析	-	-	•	•	•
クロノポテンショメトリー	-	-	-	•	•
クロノポテンショメトリー / 電流ランプ	-	-	-	•	•
Open Circuit Potential-Time	•	•	•	•	•
Sweep-Step-function	-	-	-	•	•
Multi-potential step	-	-	-	•	•
Multi-current-step	-	-	•	•	•
電気化学ノイズ測定	-	-	-	-	•
CV シミュレーション (機能限定版)	•	•	-	-	-
CV シミュレーション	-	-			

^{#:} ポーラログラフィーモードを実行できる

測定パラメータのダイナミックレンジ

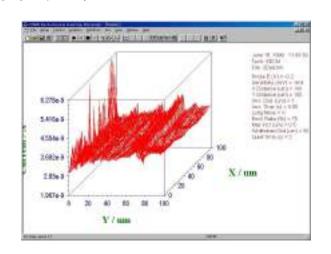
パラメータ	レンジ	テクニック
電位 (V)	-10 ∼ +10	
電流 (A)	$0 \sim \pm 0.010$	
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	
スキャン速度 (V/s)	$0.000001 \sim 500$	CV, LSV
パルス幅 (sec)	0. 001 - 1,000	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング間隔 (sec)	$0.00005 \sim 100$	i-t
周波数 (Hz)	$1 \sim 10000$	SWV

モデル 8xxC: シングル (8x0C) またはデュアル (8x2C) チャンネル電気化学センシング。高感度、低ノイズ 24-bit A/D コンパーター。バイポテンショスタットなので RRDE に使用できる

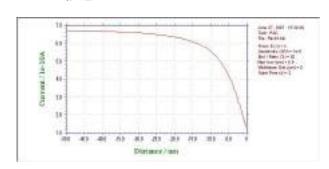
[&]amp;: ストリッピングモードを実行できる。

モデル 920D 走査型電気化学顕微鏡

1989年に紹介された走査型電気化学顕微鏡 (SECM) は界面近傍の化学的な変化を高解像度で観察するための装置です。サンプル表面近傍をスキャンして微小探針で起こる反応を画像化します。SECM は表面の化学物質の反応像、反応速度の定量を行うために使用します。多くの SECM の研究成果は世界中の研究室から報告されています。応用分野としては腐食研究、細胞膜の研究、液液界面の研究に用いられており、更に用途が広がっています。SECM を用いたシングルセルから酸素等の測定も報告されています。モデル 920D SECM はテキサス大学のグループと共同開発しました。


モデル 920D 走査型電気化学顕微鏡はファンクションジェネレーター、バイポテンショスタット、高 解像度データ処理、三次元マイクロポジショナーから構成されています。

- 1. A. J. Bard, F.-R. F. Fan, J. Kwak, and O. Lev, Anal. Chem. 61, 132 (1989); U.S. Patent No. 5,202,004 (April 13, 1993).
- 2. A. J. Bard, F.-R. Fan, M. V. Mirkin, in Electroanalytical Chemistry, A. J. Bard, Ed., Marcel Dekker, New York, 1994, Vol. 18, pp 243-373.


モデル 920D 仕様

機能		羊細	機能	詳細
	X,Y,Y 解像度	4 nm 以下		ウインドウズソフト
マイクロポジショナー	X,Y,Z 移動距離	5.0 cm		アンペロメトリーとポテンショメトリー
	Closed Loop Piezo (920C)	1.6 nm で 85u m の移動距離		一定の高さと一定電流モード
	プローブポテンシャル	± 10 V	2 M/h	リアルタイムで絶対と相対距離表示
	差分電位	± 10 V	その他	リアルタイムでプローブとサンプル電流表示
 バイポテンショスタット	出力電位	± 12 V		電流 vs.X プロット
ハイホテンンヨスダット	電流感度	$10^{-12} \sim 10^{-1} \text{ A/V}$		電流 vs.Y プロット
	最大電流	± 250 mA		電流 vs.Z プロット
	ADC 解像度	20 bit/1 kHz, 24 bit/10 Hz		電極表面観察
	走査プローブテクニック			腐食
	プローブ走査曲線,プローブ接近曲線		с п	生物学サンプル
	SECM イメージ, Surface P	atterned Conditioning	応用	固体の分解
	CV, LSV, SCV, Tafel, CA, Co	C, DPV, NPV, DNPV, SWV,		液体/液体の海面
	ACV, SHACV, i-t, DPA, DD	PA, TPA, BE, HMV, SSF, STEP,		薄膜
	IMP. IMPT. IMPE. CP. CPCR. ISTEP. PSA. ECN. OCPT			

SECM イメージ

プローブ接近カーブ

Model 1000C マルチポテンショスタット

Mode 10xxC シリーズエレクトロケミカル検出器はウインドウズ上でパソコンで制御する電気化学測定器であり、高い信頼性・応用性を有する測定装置です。ポテンショスタットとファンクションジェネレーターがドッキングし、アンペロメトリック、CV 測定を8チャンネルで実行できます。操作は簡単で測定モードを選択し、パラメータを入力すると、自動的に測定を開始します。第一チャンネルの印加電圧範囲は \pm 10 V、その他7チャンネルの印加電圧範囲は \pm 10 Vです。測定電流範囲は \pm 10 MAです。各チャンネルは ON/OFF 制御、電位、感度を独立して設定できます。各チャンネルデータは別々に表示、重ね書き等も行えます。

電気化学測定テクニック

テクニック	1000C	1010C	1020C	1030C	1040C
サイクリックボルタンメトリー (CV)		\circ	\circ		
リニアスイープボルタンメトリー (LSV) &	0	\circ	\circ	0	
クロノアンペロメトリー (CA)	-	-	-	\circ	
クロノクーロメトリー (CC)	-	-	-	\circ	
微分パルスボルタンメトリー (DPV) #.&	-	-	\circ		
ノーマルパルスボルタンメトリー (NPV) #.&	-	-	\circ	\circ	
矩形波ボルタンメトリー (SWV) ^{&}	-	-	\circ	\circ	
交流ボルタンメトリー (ACV)	-	-	-	-	
第二高調波ボルタンメトリー (SHACV)	-	-	-	-	
アンペロメトリー I-t 曲線 (I-t)	\circ	\circ	-	\circ	
微分パルスアンペロメトリー (DPA)	-	\circ	-		
トリプルパルスアンペロメトリー(TPA)	-	\circ	-	\circ	
スィープ - ステップファンクション (SSF)	_	_	O		
マルチ - ポテンシャルステップ (STEP)	_	-	-		
オープンサーキットポテンシャル (OCPT)		0	0		

○は標準、-はオプションとなります

電気化学的な仕様

パラメータ	モデル 1000C シリーズ
ポテンシャル範囲	± 10 V
電流範囲	± 10 mA
感度	$1 \times 10^{-9} \sim 0.001 \text{A/V}$
入力インピーダンス	$1 \times 10^{12} \Omega$
電流測定分解能	< 1 pA
最大電位速度	16 bit @ 1MHz
最大サンプリング速度 Hz	1,000
データサンプリング	16 bit@1 MHz
ADC 分解能 @10Hz	24bit
スキャン速度 (V/sec) CV	$10^{-6} \sim 5000$
パルス幅 CA, CC	$0.0001 \sim 1000 \mathrm{sec}$
パルス幅 DPV, NPV	$0.001 \sim 10 \text{ sec}$
周波数 SWV	$1\sim 100~\mathrm{Hz}$

モデル 1100C シリーズパワーポテンショスタット / ガルバノスタット

モデル 1100C シリーズはバッテリー、腐食、電気分解、鍍金等のような大きな電流を必要とする用途に開発しました。電流範囲は $\pm 2.0\,\mathrm{A}$ です。コンプライアンス電圧も $\pm 25\,\mathrm{V}$ あります。機器の構成はデジタル関数発生器、データサンプリングシステム、電流信号のフィルター、iR 補償機能、ポテンショスタット、ガルバノスタット (モデル 1140C)です。電位の制御範囲は $\pm 10\,\mathrm{V}$ です。同様なシステム構成はモデル 600E とモデル 680C との組み合わせとなります。モデル 1100C シリーズはコンパクトで、モデル 600D シリーズの構成に比べて価格的に安価です。電流も 10pA までの計測も可能です。CV によるスキャン速度も 5,000 V/sec までの速度でスキャンできます。

仕様

ポテンショスタット		CV と LSV スキャン速度	0.000001 ~ 5,000 V/s
ガルバノスタット (モデル 1140B)		スキャン中の電位増加分	1000V/s 以下の場合、0.1 mV
電位範囲	-10 ∼ 10 V	CA と CC パルス幅	$0.001 \sim 1,000 \text{ sec}$
立ち上がり時間	< 2 μ s	CA と CC ステップ	320
出力電圧	± 25 V	DPV と NPV パルス幅	$0.001 \sim 10 \text{ sec}$
3- または 4- 電極配置		SWV 周波数	$1\sim 100~\mathrm{kHz}$
電流範囲	± 2 A	自動電位電流ゼロ化	
参照電極入力インピーダンス	1 × 10 ⁻¹² Ω	ローパス信号フィルター	自動とマニュアル設定
感度スケール	$1 \times 10^{-10} \sim 0.1 \text{ A/V}$ 、12 レンジ	セル制御	パージ、撹拌、ノック
入力バイアス電流	< 100 pA	iR 補償	自動、マニュアル
電流測定分解能	< 1 pA	データの長さ	128K ∼ 4096 K
電位更新速度	10 MHz	寸法	$31 \text{ (W)} \times 28 \text{(D)} \times 12 \text{(H)} \text{ cm}$
データ取込み	16 bit @ 1MHz	重量	6.8 Kg

モデル 1100C シリーズパワーポテンショスタットの種類

テクニック	1100C	1110C	1120C	1130C	1140C
サイクリックボルタンメトリー (CV)					
リニアスイープボルタンメトリー (LSV) &					
階段波ボルタンメトリー (SCV) #,&					
ターフェルプロット (TAFEL)					
クロノアンペロメトリー (CA)				•	
クロノクーロメトリー (CC)	•			•	
微分パルスボルタンメトリー (DPV) ^{#,&}					
ノーマルパルスボルタンメトリー (NPV) #.&					
微分ノーマルパルスボルタンメトリー (DPNV) ^{#,&}					
矩形波ボルタンメトリー (SWV) ^{&}					
アンペロメトリー I-t 曲線 (I-t)					
交流ボルタンメトリー (ACV)					
第二高調波ボルタンメトリー (SHACV)					
微分パルスアンペロメトリー (DPA)					
ダブル微分パルスアンペロメトリー (DDPA)					
トリプルパルスアンペロメトリー (TPA)					
クーロメトリーによる電気分解 (BE)					
スィープ - ステップファンクション (SSF)					
マルチ - ポテンシャルステップ (STEP)					
クロノポテンショメトリー (CP)					
電流ランプによるクロノポテンショメトリー (CPCR)					
ポテンショメトリックストリッピング分析 (PSA)					
オープンサーキットポテンシャル (OCPT)					
CV シミュレーター (Limited version)					
CV シミュレーター (Full version)					

モデル 1200B シリーズ電気化学アナライザー

モデル 1200B シリーズ電気化学アナライザーはバッテリー駆動で、場所を選ばすに何処でも計測できるポテンショスタットです。操作は測定モードを選択し、パラメーターを入力すると、自動的に測定を開始します。

応 用 高感度ポテンショスタット機能 pA レベルの電流が測定できる フィールドでの電気化学測定に最適 どこできも計測できるコンパクト設計

モデル 1200B は手のひらサイズのハンディーなポテンショスタットです。 コンピューターの USB から電顕供給されます。背面のパネルには電極ケーブル、USB 端子があります。

電気化学的な仕様

パラメータ	モデル 1200B シリーズ
ポテンシャル範囲	± 2.4 V
出力電圧	± 7.5 V
電流範囲	± 2 mA
感度	$1 \times 10^{-10} \sim 0.01 \text{ A/V}$
入力インピーダンス	$1 \times 10^{12} \Omega$
最小電位分解能	100 μ V
最大データ長	128,000
電流測定解像度	< 5 pA
ADC 分解能 @10Hz	16 bit@10 kHz
スキャン速度 (V/sec) CV	$10^{-6} \sim 10$
パルスステップ CA, CC	1 ~ 320
パルス幅 DPV, NPV	$0.001 \sim 10 \text{ sec}$
周波数 SWV	1 ∼ 5,000 Hz
ポテンショスタット	シングル / デュアル
大きさ	$22(W) \times 11(D) \times 2.5(H) \text{ cm}$

電気化学測定テクニック

= aa	1200B	1205B	1207B	1210B	1220B	1230B/	1240B
テクニック	/1202B	/1206B	/1208B	/1212B	/1222B	1232B	/1242B
サイクリックボルタンメトリー	0	0	0	0	0	0	0
リニアースィープボルタンメトリー	0	0	0	0	0	0	0
クロノアンペロメトリー	0	-	-	-	0	0	0
クロノクーロメトリー	0	-	-	-	0	0	0
微分パルスボルタンメトリー	-	-	-	0	0	0	0
ノーマルパルスボルタンメトリー	-	-	-	0	0	0	0
微分ノーマルパルスボルタンメトリー						0	0
矩形波ボルタンメトリー	-	-	-	-	-	0	0
交流ボルタンメトリー							0
第二高調波ボルタンメトリー							0
アンペロメトリー	-	\circ	0	-	0	0	0
微分パルスアンペロメトリー	-	-	0	-	-	0	0
ダブル微分パルスアンペロメトリー	-	-	0	-	-	0	0
トリブルパルスアンペロメトリー	-	-	0	-	-	0	0
オープンサーキットポテンシャル	0	0	0	0	0	0	0
CV シミュレーター (Limited version)	0	0	0	0	0	-	-
CV シミュレーター (Full version)	-	-	-	-	-	0	0

モデル 200(B) ピコアンペアブースター

モデル 200(B) ピコアンペアブースター (PAFC) を用いますと、数ピコアンペアの微少電流を容易に測定できます。 モデル 200 はモデル 600/A、700/A シリーズの機器に利用できます。また、200B は 600B/C/D/E、700B/C/D/E と 800B/C に利用できます。バイポテンショスタット 700/A/B/C/D と 800B/C は第一チャンネルのみ有効となります。

ピコアンペアブースターを接続する前、装置の電源をオフにします。ピコアンペアブースターを装置の 裏面パネルの Electrodes コネクターに接続します。装置の裏面パネルの Cell Control コネクターにピコアンペアブースターの DB-25 ケーブルを用いて接続します。電源をオンにして下さい。

DB-25 コネクターは電源を供給し、ラインを制御します (付録のケーブル、接続を参照して下さい)。 DB-25 コネクターが接続されていない場合、ピコアンペアブースターを使用不可にしても、測定は行えます。この場合、ファラデーケージは効果的です。

ガスパージを行う場合、セルスタンドの背面にあるガスパージのコネクターにガス栓を接続します。 ピコアンペアブースターを接続し、感度スケールを 1×10⁸A/V 以下にしますと、ピコアンペアブー スターは使用可能になります。さもなければ、使用できません。ピコアンペアブースターは自動的に スィッチを切り替えます。

ピコアンペアブースターはターフェル、バルク電気分解、インピーダンスのような自動感度を使用するテクニックでは使用できません。これらのテクニックでは接続を外す必要はありません。しかし、クロノポテンショメトリー、ポテンショメトリックストリッピング分析のようなガルバノスタットテクニックでは、ピコアンペアブースターは外しておいて下さい。

モデル 600 シリーズは 1×10^8 ~以下の感度にてピコアンペアブースターが必要になります。

モデル 684 マルチプレクサーコマンド

モデル 684 マルチプレクサーはモデル 400/A、600A/B/C/D/E、700A/B/C/D/E、800B/C、900B/C、1100A/B/C シリーズと一緒に使用できます。マルチプレクサーを用いて一連の計測を行うためのコマンドです。必要なハードウェアーはモデル 684 マルチプレクサーです。モデル 684 の最低チャンネルは 8 です。チャンネル数は 8 の倍数、x16, 24, x32・・・となり、最大 64 チャンネルまで用意しています。

マルチプレクサーの1電極当たりのケーブルは4本(作用、センス、参照、カウンター電極)から構成されています。最大64セルまで接続でき、自動計測が行えます。

マルチプレクサーには2つのマクロコマンドがあります。

1つは "mch:##" 各チャンネルを設定できます。

他のマクロコマンドは "mchn" は For.......Next loop で使用されます。For......Next loop を使用することにより、" mchn" で特定のチャンネルをスキップして測定します。

モデル 680C アンペアブースター

モデル 680C アンペアブースターを使用すると、電流は 2 A まで測定できます。モデル 680C は機器 モデル 600E に互換性を持っています。

アンペアブースターを接続する前に、装置の電源をオフにします。モデル 680 の 4- ピン din コネクターをモデル 600E の裏面パネルの electrodes コネクターに接続します。両装置のセルコントロールポートも直接 3-ft DB-25 ケーブル(モデル 680 附属ケーブル)で接続します。モデル 6xxE とモデル 680 の両装置の電源をオンにします。一般的にモデル 6xxE を先にオンにしてからモデル 680C をオンにするのは最適です。電源をオフにする場合、逆の順番で行ってください。

セルコネクターは 5- ピンコネクターで、4 つのセルリードがあります。緑色のクリップは作用電極、白いクリップは参照電極、赤色のクリップは対電極、黒いクリップは 4- 電極構成のセンシング電極用です。4- 電極構成の使用不使用はコントロールメニュー下のセルコマンドの 4-electrodes ボックスをチェックする、しない、ことによって設定します。4- 電極オプションを ON にすると、黒いリード線を作用電極に接続させます (緑色と黒いリード線をショートさせます)。4- 電極構成は電流が比較的高い場合に有効です。コネクターや、リレーや、回路基板の抵抗を減少させます ($(0.2 \sim 0.3 \, \text{オームぐらい})$)。

アンペアブースターが接続される場合、パージ、ノック、撹拌等のセルコントロール信号は不能になります。

アンペアブースターは低電流測定にも可能です。10 pAまでの低電流も測定できます。スキャン速度が50 mV/s以上の時、ライン周波数ノイズを削減するためにファラデーケージが必要になります。

アンペアブースターの周波数応答はモデル 6xxD 装置より少し低くなります。高速測定の場合、アンペアブースターを切り離さなければなりません。

ハードウエアに問題が起きたら、アンペアブースターを接続されない状態で、ハードウエアのテストを行ってください。モデル 6xxE がテストが終わってから、アンペアブースターを接続して基準抵抗でアンペアブースターをテストしてください。CV を使用すると、電位/抵抗の傾きを持った直線を見ることができます。

モデル 682 液 / 液界面アダプター

モデル 682 は電化移動、ケミカルセンサー、薬物放出、溶媒抽出などの液 / 液界面研究には重要です。液 / 液界面研究は通常 2 本の参照電極、2 本のカウンター電極を使用します。改造したポテンショスタットは二相中の二つの参照電極の電位差をコントロールします。一方、二つのカウンター電極を通過する電流を測定します。モデル 682 液 / 液界面インターフェースアダプターはモデル 700E に互換性があります。この機種はユーザーにとっては完全自動の測定器です。殆どの電気化学手法が使用できますが、ガルバノスタット、バイポテンショスタット機能を持っていません。

モデル 400A/B/C、600A/B/C/D/E、700B/C/D/E、800B/C、900B/C、1100/A/B/C シリーズならびに 4 電極システムはモデル 682 液 / 液界面インターフェースアダプターを使用しなくとも直接液 / 液界面測定が行えます。

CV 電極 & アクセサリー

●特注タイプの電極も製作いたしますのでご遠慮なくお問い合わせ下さい。

カタログ No	品名及び規格	仕様
002013	PTE 白金電極	OD:6mm, ID:1.6mm
002420	PTE 白金電極	OD:10mm, ID:5.0mm
002422	PTE 白金電極	OD:6mm, ID:3.0mm
002012	GCE グラッシーカーボン電極	OD:6mm, ID:3.0mm
002411	GCE グラッシーカーボン電極	OD:6mm, ID:1.0mm
002417	GCE グラッシーカーボン電極	OD:10mm, ID:5.0mm
002014	AUE 金電極	OD:6mm, ID:1.6mm
002418	AUE 金電極	OD:10mm, ID:5.0mm
002421	AUE 金電極	OD:6mm, ID:3.0mm
002011	AGE 銀電極	OD:6mm, ID:1.6mm
002416	AGE 銀電極	OD:10mm, ID:5.0mm
002419	AGE 銀電極	OD:6mm, ID:3.0mm
002408	PFCE 3 カーボン電極	OD:6mm, ID:3.0mm
002409	PFCE 1 カーボン電極	OD:6mm, ID:1.0mm
002016	NIE ニッケル電極	OD:6mm, ID:5.0mm
002017	CUE 銅電極	OD:6mm, ID:1.6mm
002018	FEE 鉄電極	OD:6mm, ID:5.0mm
002252	Pyrolytic Graphite 電極 (Basal Plane)	OD:6mm, ID:3.0mm
002253	Pyrolytic Graphite 電極 (Edge Plane)	OD:6mm, ID:3.0mm
002210	CPE カーボンペースト電極	OD:6mm, ID:3.0mm
002223	MCPE マイクロカーボンペースト電極	OD:3mm, ID:1.6mm
002007	MCE 微小カーボンファイバー電極	OD:4mm, ID:7 μ m
002002	MCE 微小カーボンファイバー電極	OD:4mm, ID:33 μ m
002005	MPTE 微小白金電極	OD:4mm, ID:10 μ m
002015	MPTE 微小白金電極	OD:4mm, ID:15 μ m
002003	MPTE 微小白金電極	OD:4mm, ID:25 μ m
002009	MPTE 微小白金電極	OD:4mm, ID:100 μ m
002006	MAUE 微小金電極	OD:4mm, ID:10 μ m
002004	MAUE 微小金電極	OD:4mm, ID:25 μ m
002271	MCUE 微小銅電極	OD:4mm, ID:25 μ m
002272	MWE 微小タングステン電極	OD:4mm, ID:10 μ m
002273	MNIE 微小ニッケル電極	OD:4mm, ID:100 μ m
002313	SPTE 白金電極	OD:3mm, ID:1.6mm
002314	SAUE 金電極	OD:3mm, ID:1.6mm
002319	SPDE パラジュウム電極	OD:3mm, ID:1.6mm
002412	SGCE グラッシーカーボン電極	OD:3mm, ID:1.0mm
002250	白金メッシュ電極	80mesh, 25 × 35mm
002251	金メッシュ電極	100mesh, 25 × 35mm

^{*}PFCE(Plastic Formed Carbon 電極) は三菱鉛筆 (株) と独立行政法人産業技術総合研究所との共同研究により開発されたものです。

^{*} 使用の際には、添付の注意事項をお読みください。作用電極は常温、常圧にて使用して頂くためのものです。

ケーブルと接続

1. 通信ポート接続 (DB-25 コネクター)

ピン	機能
2	受信
3	発信
7	デジタルグラウンド

2. セルコントロール接続 (DB-25 コネクター)

```
1
2
3
           アナロググラウンド
4
5
           -15V
                     (<20 mA 負荷)
           +5V
                      (<100 mA 負荷)
           デジタルグラウンド
7
8
                     (アクティブレベルはセルコントロールにて設定)
9
           ノック (アクティブローパルス)
10
           外部デバイスセンス1
           外部デバイスセンス 2
11
           外部デバイス制御1
12
           外部デバイスセンス3(外部トリガー入力、TTL信号、アクティブロー)
13
14
           予備
          予備
15
16
17
          +15V
                     (<20 mA 負荷)
18
19
          外部デバイス制御2
           外部デバイス制御3
20
21
           パージ
                     (アクティブローレベル)
22
           外部デバイス制御4
23
24
           外部デバイス制御5
25
           予備
```

セルコントロールポートは攪拌、パージ、ノックの制御に使用します。互換性についてはお持ちのセルスタンドのマニュアルをご参照下さい。ジャンパー、ケーブルによる接続が必要になる場合もあります。

ピン	機能
1	作用電極(緑)
2	参照電極(白)
3	カウンター電極(赤)
4	アナロググラウンド
5	第二作用電極(黄)
6	センス電極 (黒)*

*: この電極は4電極構成に使用します。液/液界面測定が行えます。この場合、赤クリップはフェーズ1のカウンター電極に接続します。白のクリップは同じフェーズの参照電極に接続します。緑のクリップはフェーズ2のカウンターに接続します。黒クリップはフェーズ2の参照電極に接続します。

4 電極構成は接触抵抗(クリップ、コネクター、リレーの開閉)と回路抵抗を削減します。大電流測定 (>100 mA) と低インピーダンスセル (<1 Ω) に重要です。しかし、小電流測定(<100 mA)と高インピーダンスセルには 好ましくありません。

4 電極構成を使用する場合、コントロールメニューのセルコマンドを使用し、"4 electrode "オプションをチェックします。センシング電極を作用電極と一緒に接続します。

4電極構成を使用しない場合、セルコントロールダイアログボックスの"4 electrode"オプションが未チェックであることを確認して下さい。さもなければ、ノイズや他の問題が発生する可能性があります。

3電極構成を使用する場合、センシング電極を接続しないで下さい。

4. RDE コントロール接続 (バナナジャック)

赤信号

エ アナロググラウンド

5. 後面パネルの信号出力 (9- ピン D コネクター)

- 1 電流出力*
- 2 電流2出力(バイポテンショスタット)
- 3 電位出力
- 4 外部信号入力 **
- 5 外部電位入力 ***
- 6 グラウンド
- 7 グラウンド
- 8 グラウンド
- 9 グラウンド

**: 入力電位の範囲は \pm 10 V です。入力ステージの入力インピーダンスは 10 K Ω です。高電位の信号にはディバイダー抵抗を使用しなければなりません。小さい電圧範囲 (<0.1 V) での信号の場合、信号にファクター 10 または 100 を乗じて増幅することができます。増幅が必要な場合、お問い合わせ下さい。

***: 外部電位入力は無効です。有効にする場合、機器の内部でジャンパーを行う必要があります。詳細についてはお問い合わせ下さい。

^{*:} 電流は電流出力表示値 (V)* 感度 (A/V) により算出されます。

ソフトウェアーの更新の手続き

機器のコントロールソフトは2つの部分から構成されています。1つはPCサイドのソフトウェアーです。機器の内部にもソフトウェアーがあります。ソフトウェアーの更新はPCサイドが中心となります。しかし、機器内部のソフトウェアーも更新することがあります。機器内部のソフトウェアーはフラッシュメモリーに記録されます。機器のソフトウェアーを更新する場合、PC用のソフトと機器用のソフトがメーカーから提供されることがあります。PCサイドのソフトのインストール方法については2章に記載されています。機器内部のソフトはヘキサデシマルファイルとなります (CHI6xx.HEX これは11xxAモデル番号となります)。機器内部のソフトウェアーを更新する場合、測定器のプログラムを更新コマンドを使用します。

Browse ボタンを選択し、ヘキサデシマルファイルを選択します。次に、アップロードボタンをクリックし、プログラムをフラッシュメモリーにダウンロードします。

ソフトの更新が失敗しましたら、エラーメッセージが表示されます。もう一度同じ操作を行って下さい。 ダウンロードが成功しましたら、確認のメッセージが表れます。これで、機器を使用することができます。

トラブルシューティング

		対処
	電源が入っていない	装置の電源を入れる
	ケーブルが接続されていない	ケーブルを接続する
	ケーブル不良	ケーブルの確認や交換
	通信ポートの設定にミスがある	セットアップメニューのシステムコマンドを使用 してポートの設定を行う
通信の失敗	パソコンの問題	システムにネットワークカードやファックス/モデムカードがないことを確認します。使用した場合、カードを外し、再度行って下さい。問題が解決されない場合、他のパソコンで試してみて下さ
	静電気	な 装置の電源を切り、再度入れます。パソコンもリ セットします。
	計算時間が長い場合	お待ち下さい
プログラムがマウスに応答しない	通信の失敗	装置、コンピューターをリセットする。
ウインドウズアプリケーションエ		プログラムの再スタート、またはコンピューター
ラー		のリセット
		ハードウェアーテストを繰り返します。エラーメッ
ハードウェアーテストエラー		 セージを記録し、販売店に連絡して下さい。
電流応答がない	電極ケーブルが接続されていない かまたはケーブルの損傷	電極ケーブルのチェック
	2 (2)	データの読みが 10 x 感度スケールを超えている場
		 合、原因は通信ポートによります。ネットワーク
	信頼性の低いデータ転送	を解除して下さい。別のコンピューターを使用し
		て下さい。
		気泡が参照電極の液絡部にトラップされているか
	参照電極のインビーダンスが高い 	をチェックして下さい; vycor 先端の参照電極に交
		換します。
	 電気的にノイズのある環境	ファラデーケージを使用して下さい;第2章の役に
 ノイズのひどいデータ		立つヒントを参照してください。
	大きな二重層キャパシタンスによ	コントロールメニューのセルコマンドを使用して
	た 日 が アナギフ	マニュアル的に安定化コンデンサーをオンにする 使用できる最高感度スケールを使用、フィルター
	信号が弱すぎる	を設定する
		システムにネットワークカードやファックス/モ
		 デムカードがないことを確認します。使用した場
	 パソコンの問題	 合、カードを外し、再度行って下さい。問題が解
	, , , , , , , ,	決されない場合、他のパソコンで試してみて下さ
		い。一点中では、中では、中では、中では、中では、中では、中では、中では、中では、中では、
 記得されたデニカがしいぶり	感度スケールが高すぎる	感度スケールを低くする ハードウェアーをテストするためにセットアップ
記録されたデータがレンジ外 	ハードウェアーの問題	·
		ニューのハードウェアーテストコマンドを使用 感度スケールを低くする
測定中のオーバーフロー警告Y	感度スケールが高すぎる プリンタードライバーに互換性が	
軸タイトルを誤った方向に回転		
	ない ソフトのバージョン、設定ファイ	ニューのフォントコマンドを使用 古い*.cfg file 削除すると、自動的に新しい設定ファ
無理なデフォルト状況		
	ルが違う ハードウェアーが接続されていな	イルが作成されます
 		装置を接続し、電源を入れる
シミュレーションプログラムが走 、		 前以って定義されたメカニズムを使用するか、諦
らない	<u>^</u>	
	ムを利用できない	めるかもしれません

メンテナンス、サービス

15~28℃範囲の室温で使用して下さい。

装置は非常にデリケートな電子機器ですので、ご自分で修理はしないで下さい。装置が最適に機能しない場合、販売店までご相談下さい。

保証について

この度は当社製品をお買い上げ頂き有難うございました。本製品は当社の厳密な製品検査に合格 したものです。お客様の正常なご使用状態の下で故障した場合、購入日より一年間無償で修理させて 頂きます。添付の製品保証書をご提示の上、弊社代理店にお申しで下さい。 但し、保証期間内においても次の事項に起因する場合は有償修理となります。

- 1. 誤ってご使用になった場合の故障
- 2. 当社に無断で改造された場合の故障
- 3. 据付後、移動あるいは輸送にって生じた故障
- 4. 地震、火災などの天災等による原因が本器以外の事由によるもの
- その他これに準ずるもの、及び製品保証書の提示がない場合

ソフトウエアの保証について

BASではお客様に納品する前、当社にて事前にソフトウェアー、ハードウェアーのチェックを行なった後、御届けするようにシステムを取っています。万が一検収時にソフトとハードが動作をしない場合、責任をもって製品の交換又は無償で修理を行ないます。

また、ソフトウエアは買い取り商品ではなく、使用権の販売になります。お客様は、買ったソフトを転売することはできません。また、基本的に不具合があった場合でも、開発側では、その不具合に対してすぐに修正することが出来ないことがあります。その不具合によって起きた損失に対価をはらう義務もないことになっています。もし、不具合がある場合、現バージョンで対応できないこともあります。

BASでは、基本的にコンピュータ関連のメンテナンスはセンドバック方式をとります。お客様のコンピュータをおあずかりする方法です。但し、他社のハードウエア故障の場合、メーカー側の保証期間内である場合、そのメーカーの保証にしたがってユーザであるお客様が修理依頼を行って頂くことになります。メーカー保証の製品修理が、BASに来た場合、メーカーに対する対応などで多少修理に時間が必要となります。これは、ユーザ管理をメーカー側で行っているためです。メーカーの保証登録は納品時点でお客様自身が実施して下さい。そうしませんと、メーカーのサポートが受けられないことがあります。

OS のバージョンアップ又は変更について

ウィンドウズ Xp に変更する。又は、ウィンドウズ Xp の英語バージョンを日本語バージョンに変更する。

1. お客さまが行った場合

保証期間内であっても、それに起因する修理(調整)は有償となります。 また、変更や調整する手助けを行うことはできません。変更する方法は、マイクロソフトのインフォメーションに聞いていただくことになります。

2.BAS で行った場合

保証はBASが行います。ただし、自社のソフトの動作確認までで、他メーカーのソフトの動作保証はできません。

お客様が準備したコンピュータに BAS のソフトをインストール場合

1. お客さまがインストールする場合

インストールに起因する不具合については、有償となります。インストールの手順については添付のマニュアルをご参照下さい。ただし、一度 BAS でインストールしたコンピュータが故障した場合などの特殊な場合は除きます。

その他、装置全体の動作確認などに時間をとられることが考えられますので注意が必要です。(最近のウィンドウズのプレインストールモデルのコンピュータは、購入しただけでは動作しません。かならずウィンドウズのインストール作業が必要となります。機種により15から60分程度かかります)

0

2.BAS でインストールする場合

インストールは基本的に有償となります。ユーザー先で行う場合は、別途費用となります。また、必要に応じてハードウェアーの調整も行い、動作確認まで行ないます。機種によって異なりますが、新品のマシンでウィンドウズの設定からだと2時間、BASのソフトのみなら1時間程度の技術料となります。

ソフトウエア動作不良

1. お客様が設定を変更した場合

出荷時点と異なる環境の場合、保証期間内であっても有償となります。他の会社のソフト/ハードをインストールして動作しなくなった場合、問題になるプログラム/ハードを削除することがあります。

2.BIOS の設定などの設定不良

基本的に保証期間内であれば無償です。ただし、出張作業の場合は有償となります。BIOSの設定は機種によって異なります。

3. ウイルス

ウイルスが内部に検出された場合、ハードディスク、BIOS などを全て初期化する必要がありますので、セットアップに時間がかかります。この修理の場合、修理後3ヵ月の無償期間は適用されません。

操作説明

BASのソフトウエアを動作させるための操作説明を中心に行ないます。ウィンドウズの説明、他社ソフトの操作説明は行うことはできません。最近のソフトウェアーは高度な知識が必要なため完全な説明を行なうためには別途専門家の派遣が必要となりますので、有償となります。