モデル 800D 電気化学アナライザー

取り扱い説明書

1章.はじめに

1.1	紹介	1
1.2	電気化学テクニック	3
1.3	ソフトウェアーの特長	5
1.4	必要なシステム構成	8
1.5	ハードウェアーの仕様	8

2章.スタート

2.1	組込み	8
2.2	試験	10
2.3	役に立つヒント	11
2.4	USB ドライバーの組込み	12
2.5	本体のセットアップ	14
2.6	電源投入	15

2.6 電源投入

3章.ファイルメニュー

3.1	ファイルを開くコマンド	16
3.2	名前を付けて保存コマンド	17
3.3	削除コマンド	18
3.4	修復コマンド	19
3.5	機器のプロクラムを更新コマンド	19
3.6	データファイル一覧コマンド	20
3.7	テキスト変換コマンド	21
3.8	テキストファイルフォーマットコマンド	24
3.9	テキストファイルインポートコマンド	26
3.10	印刷コマンド	27
3.11	多重ファイル印刷コマンド	28
3.12	印刷セットアップコマンド	29
3.13	終了コマンド	30

4章. セットアップメニュー

4.1 テクニックコマンド	31
4.2 パラメータコマンド	32
4.3 スィープテクニック	33
4.3.1 サイクリックボルタンメトリー パラメータ	35
4.3.2 リニアースィープボルタンメトリーパラメータ	37
4.3.3 ターフェルプロットパラメータ	39
4.4 ポテンシャルテクニック	40
4.4.1 クロノアンペロメトリーパラメータ	43
1	

4.4.2 クロノクーロメトリーパラメータ	45
4.5 パルステクニック	47
4.6 ノーマルパルステクニック	49
4.6.1 階段波ボルタンメトリーパラメータ	51
4.6.2 微分パルスボルタンメトリーパラメータ	52
4.6.3 ノーマルパルスボルタンメトリーパラメータ	53
4.6.4 微分ノーマルパルスボルタンメトリーパラメータ	54
4.7 矩形波テクニック	55
4.7.1 矩形波ボルタンメトリーパラメータ	56
4.8 交流テクニック	57
4.8.1 交流ボルタンメトリーパラメータ	59
4.8.2 第二高調波交流ボルタンメトリーパラメータ	60
4.9 アンペロメトリーテクニック	61
4.9.1 アンペロメトリー i-t 曲線パラメータ	62
4.9.2 微分パルスアンペロメトリーパラメータ	64
4.9.3 ダブル微分パルスアンペロメトリーパラメータ	66
4.10 トリプルパルステクニック	68
4.10.1 トリプルパルスアンペロメトリーパラメータ	69
4.10.2 積分パルスアンペロメトリー検出	71
4.11 クーロメトリーによるバルク電気分解	73
4.11.1 バルク電気分解 – クーロメトリーパラメータ	74
4.12 ハイドロダイナミックテクニック	75
4.12.1 ハイドロダイナミック変調ボルタンメトリーパラメータ	77
4.12.2 スィープステップファンクションパラメータ	78
4.12.3 マルチポテンシャルステップパラメータ	80
4.13 クロノポテンショメトリーパラメータ	81
4.13.1 電流ランプ-クロノポテンショメトリーパラメータ	83
4.13.2 マルチ電流ステップ	84
4.14 ポテンショメトリックストリッピング分析パラメータ	85
4.15 電気化学ノイズ測定	86
4.16 オープンサーキットポテンシャル-タイムパラメータ	87
4.17 システムコマンド	88
4.18 ハードウェアーテストコマンド	90

5章.コントロールメニュー

5.1	測定コマンド		92
5.2	待機/再開コマンド		93
5.3	測定停止コマンド		94
5.4	スキャン反転コマンド		94
5.5	測定状況コマンド		95
5.6	静止時間ー電流値制御機能の操作		97
5.7	繰返し測定コマンド	ii	98

5.8	繰返し測定の機能	99
5.9	マルチプレクサーコマンド	101
5.10	マクロコマンド	103
5.11	オープンサーキットポテンシャルコマンド	107
5.12	iR 補償コマンド	108
5.13	iR補償	110
5.14	フィルター設定コマンド	112
5.15	セルコマンド	114
5.16	ステップファンクションコマンド	116
5.17	前処理コマンド	117
5.18	回転ディスクコマンド	118
5.19	その他コントロールコマンド	119
5.20	ストリッピングモードコマンド	120
۰. ۲		
6草.	クラフィックスメニュー	
6.1	現在のデータプロットコマンド	121
6.2	重ね書き表示コマンド	124
6.3	データを重ね書きに追加コマンド	125
6.4	パラレルプロットコマンド	126
6.5	データをパラレルに追加コマンド	127
6.6	ズームコマンド	128
6.7	マニュアル結果コマンド	129
6.8	ピーク定義コマンド	130
6.9	X-Y プロットコマンド	131
6.10	ピークパラメータプロットコマンド	133
6.11	半対数プロットコマンド	136
6.12	スペシャルプロットコマンド	137
6.13	グラフオプションコマンド	139
6.14	色、説明コマンド	141
6.15	フォントコマンド	143
6.16	クリップボードへのコピーコマンド	144
7 音	デー々如理メニュー	
7 平 ·		145
7.1	ハム シンクコマンド	143
7.2	100月コマンド 珪〇コマンド	147
1.5 7 /	(1) コンマト 半巷会 半徴会ココンド	148
/.4 7 5	十個カ、十個カー メント まきひ カラフンド	149
1.3 7.6	百己心のコメノト	150
/.0 7 7	· 、 ニ ヘ ノ 1 マ ノ 1 フ ノ 1 マ ク 、	151
1.1	ハームフィン開止コマント	153

7.8	データポイント除去コマンド	154
7.9	データポイント修正コマンド	 155

7.10	バックグラウンド減算コマンド	156
7.11	シグナル平均化コマンド	157
7.12	数学操作コマンド	158
7.13	フーリェスペクトルコマンド	159

8章.分析メニュー

8.1	キャリブレーション曲線コマンド	160
8.2	スタンダード添加コマンド	162
8.3	データファイルレポートコマンド	164
8.4	時間依存コマンド	167
8.5	スペシャルプロットコマンド	170

9章.	シミュレーションメニュー	
9.1	メカニズムコマンド	172
9.2	ポテンシャル、速度定数ダイアログボックス	175
9.3	濃度、拡散係数ダイアログボックス	176
9.4	表面濃度ダイアログボックス	176
9.5	平衡時の濃度ダイアログボックス	177
9.6	シミュレーション変数ダイアログボックス	177
9.7	シミュレーションコマンド	178

9.8 交流インピーダンスのシミュレーター 179

10 章. ビューメニュー

10.1	データ情報コマンド	197
10.2	データー覧コマンド	198
10.3	理論式コマンド	199
10.4	クロックコマンド	200
10.5	ツールバーコマンド	201
10.6	ステータスバーコマンド	201

11 章.ヘルプメニュー

11.1 ヘルプトピックスコマンド	202
-------------------	-----

付録

门荻		
A-1	電気化学テクニックの略称	203
A-2	モデル 400C シリーズ電気化学水晶振動子マイクロバランス	205
A-3	モデル 600E シリーズのテクニック電気化学アナライザー	207
A-4	モデル 700E シリーズバイポテンショスタットのテクニック	208
A-5	モデル 800D シリーズ電気化学ディテクターのテクニック	209
A-6	モデル 900C/920C 走査型電気化学顕微鏡	210
A-7	モデル 1000C シリーズマルチポテンショスタット	211
A-8	モデル 1100C シリーズパワーポテンショスタット / ガルバノスタット	212

A-9	モデル 1200B シリーズハンドヘルドポテンショスタット	213
A-10	モデル 200(B) ピコアンペアブースターとファラデーケージ	214
A-11	モデル 684 マルチプレクサ	214
A-12	モデル 680C アンペアブースター	215
A-13	モデル 682 液 / 液界面アダプター	215
A-14	CV 電極 & アクセサリー	216
A-15	ケーブルと接続	217
A-16	ソフトウェアーの更新	219
A-17	トラブルシューティング	220
A-18	メンテナンスとサービス	221
A-19	保証について	222
A-20	ソフトウェアーの保証について	223
A-21	外部トリガー	225

1.1 紹介

モデル 800D シリーズは高感度用途のバイポテンショスタットで、FIA, HPLC 等の電機化学分析に最適な器機です。デュアルチャンネル測定が必要な場合にも使用できます。

モデル800Dシリーズは汎用性に優れた電気化学計測装置です。本装置には高速デジタルファンクショ ンジェネレーター、高速データサンプリングシステム、ポテンシャル、電流信号用のフィルター、第二 ゲインステージ、iR補償回路、ポテンショスタット、ガルバノスタットを内蔵しています。ポテンシャ ル制御範囲は±10V、電流範囲は±10mAです。また、電流感度は単体でピコアンペアまで対応してい ますので、10μm微小電極を用いた電気化学計測を行うことができます。1pA以下の電流を計測できます。 機器の定期的なキャリブレーションは不要です。

モデル 800D シリーズはウインドウズ環境下で PC により制御できます。操作性に優れ、ユーザーイ ンタフェースはウインドウズデザインに準拠しています。ウインドウズアプリケーションを使用してい るならば、マニュアル、ヘルプが無くとも機器を操作できるでしょう。コマンド、パラメーター、オプショ ンは化学者馴染みの深い専門用語を用いました。ツールバーは通常使用するコマンドに簡単にアクセス できます。ヘルプシステムはオンラインヘルプ機能にしました。

装置は、多くのパワフルな機能を、例えばファイルの取扱い、実験コントロール、柔軟なグラフィックス機能、各種データ解析、効率的なデジタルシミュレーション、その他ユニークな特徴としてはマクロコマンド、色指定、フォントの選択、データの書込み、見ながらのベースライン補正、信号の平均化、フーリェ変換、電気化学計測法に関係する式の表示などがあります。

800D シリーズはプロセッサーの交換により、10 倍計算策度が向上しました。4 層基板を使用することにより、周波数応答の向上、ノイズの低減、今までより高速アンプを使用しました。最大サンプリング速度は1 MHz です。機器内部のソフトウェアーはフラシュメモリーを使用しまたのて、簡単にソフトウェアーのアップグレードが可能となりました。

800D シリーズは PC との通信接続を行う上で、シリアルポートあるいは USB ポートのどちらか一方 を選択できます。

バイポテンショスタット使用する場合、2 チャンネルは独立コントロールできます。

モデル 842D にはガルバノ機能を内蔵しました。850D/852D には交流ボルタンメトリーを加えました。

1.2 電気化学テクニック

スィープテクニック ● サイクリックボルタンメトリー ●リニアースィープボルタンメトリー ●回転ディスク電極ボルタンメトリー ●ターフェルプロット ●ステップースィープ機能

ステップテクニック

- ●クロノアンペロメトリー
- ●クロノクーロメトリー
- ●階段状ボルタンメトリー
- ●タストポーラログラフィー
- ●微分パルスボルタンメトリー/ポーラログラフィー
- ●ノーマルパルスボルタンメトリー/ポーラログラフィー
- ●微分ノーマルパルスボルタンメトリー/ポーラログラフィー
- ●矩形波ボルタンメトリー
- ●ステップスィープ機能
- ●マルチポテンシャルステップ

交流テクニック

- ●交流ボルタンメトリー/ポーラログラフィー
- ●位相選択交流ボルタンメトリー/ポーラログラフィー
- ●第二高調波交流ボルタンメトリー/ポーラログラフィー
- ●交流インピーダンススペクトロメトリー
- ●交流インピーダンスー時間
- ●交流インピーダンスーポテンシャル

ストリッピングテクニック

●リニアースィープストリッピングボルタンメトリー

- ●微分パルスストリッピングボルタンメトリー
- ●ノーマルパルスストリッピングボルタンメトリー
- ●矩形波ストリッピングボルタンメトリー
- ●交流ストリッピングボルタンメトリー
- ●位相選択交流ストリッピングボルタンメトリー
- ●第二高調波交流ストリッピングボルタンメトリー

電流制御テクニック

- ●クロノポテンショメトリー
- クロノポテンショメトリー電流ランプ
- ●マルチ電流ステップ

●ポテンショメトリックストリッピング分析

アンペロメトリー検出テクニック
i-t 曲線(アンペロメトリー)
微分パルスアンペロメトリー
ダブル微分パルスアンペロメトリー
トリプルパルスアンペロメトリー
積分パルスアンペロメトリー検出

その他テクニック

バルク電気分解-クーロメトリー
 ハイドロダイナミック変調ボルタンメトリー
 電気化学ノイズ測定
 オープンサーキットポテンシャル - タイム

1.3 ソフトウェアーの特長

- ユーザーインターフェース
- 32-bit ウインドウズアプリケーション
- ツールバー:頻繁に使用するコマンドに簡単にアクセスできる
- ステータスバー:テクニック、ファイル状況、コマンドプロンプット
- プルダウンメニュー
- ダイアログボックス
- フルマウスサポート
- WYSIWYG グラフィックス
- ヘルプ機能の充実

ファイルマネージメント

- データファイルを開く
- データファイルの保存
- ●ファイルの削除
- データファイルの一覧
- テキストファイルの変換:データを他のソフトウェアー、例えば、スプレッドシートにエキスポート
- テキストファイルフォーマット
- ●現在のデータの印刷
- 多数のファイルの印刷
- プリントセットアップ

セットアップ

- テクニック:電気化学テクニックのフルレパートリー
- 実験パラメータ:非常に広いダイナミックレンジ
- システムセットアップ:通信ポート、電位極性と、電流軸
- ハードウェアーテスト:デジタル、アナログ回路診断テスト

機器の制御

- 測定: ほとんどの場合、リアルタイムデータ表示
- 繰返し測定:自動データ保存、信号の平均化、遅延またはプロンプット
- 測定の停止
- 測定中のスキャン方向の反転:サイクリックボルタンメトリー
- 測定状況 : 攪拌、パージ、iR 補償、測定後スムージング、RDE、SMDE 制御状況
- マクロコマンド:編集、保存、読込み、一連のコマンドの実行
- オープンサーキットポテンシャル測定
- iR 補償 : 自動、マニュアル補償、溶液抵抗、二重層キャパシタンス、安定化テスト
- アナログフィルター設定:ポテンシャル、i/V コンバーター、シグナフィルターの自動またはマニュ アル設定
- セル制御:パージ、攪拌、セルオン、SMDE 滴下採取、前滴下ノック安定化コンデンサー
- ステップファンクション:電極洗浄または他の目的のためのステップファンクションジェネ

レーターの多数サイクル

- 測定前の作用電極のコンディショニング
- 回転ディスク電極:回転スピード、析出中、静止時間、測定の間の on/off 制御
- ストリッピングモード:使用可能/使用不可、析出電位、時間、攪拌、パージ条件

グラフィック表示

- 現在のデータプロット: ヘッダー、ファイル名、パラメータ、結果を伴うデータプロット
- 再スケール、ラベル:X、Y 軸表示、再スケール、テキストの挿入
- 上書プロット:比較のために何種類かのデータセットを上書
- パラレルプロット:何種類かのデータセットを並べてプロット
- ズーム: 選択したズームエリアを視覚化
- マニュアルによる結果:選択したベースラインを視覚化
- ピーク定義:形、幅、レポートオプション
- X-Y プロット:データポイント用として
- $\ell' = \ell' \rho r = \rho r = 0$ $\ell' = \rho r = 0$ $\ell' = \rho r = 0$ $\ell' = 0$
- 半対数プロット:電流一電位半対数プロット
- グラフオプション:ビデオまたはプリンターオプション、軸、パラメータ、ベースライン、結果、グリッド、軸反転、軸固定、軸タイトル、データセット、XY スケール、参照電極、ヘッダー、注
- 色、説明:バックグラウンド、軸、グリッド、曲線、説明サイズ、厚さ、表示間隔
- フォント:フォント、スタイル、サイズ、軸ラベルの色、軸タイトル、ヘッダー、パラメータ、結果
- クリップボードヘコピー:データプロットをワープロにペースト

データ処理

- スムージング:5~49ポイント最小二乗法、フーリェ変換
- 微分:1~5次、5~49ポイント最小二乗法
- 積分
- 畳み込み:半微分、半積分
- 書込み:2×~64×データ書込み
- ベースラインフィッティングと減算:フィッティング機能の選択、多項式、ベストフィッティングの 電圧範囲、ベースライン減算:微量分析に有効
- ベースライン補正:選択したベースライン、勾配、dc レベル補償
- データポイント除去
- データポイント変更:データポイント変更の視覚化
- バックグラウンド減算:2組のデータセットの差分
- 信号の平均化:多数のデータ組の平均化
- 数学操作: 両 X、Y データ配列
- フーリェスペクトル

解析

- キャリブレーション曲線:未知濃度、傾き、切片、曲線の相関性の計算、キャリブレーション曲線 のプロット、キャリブレーションデータの保存と読込み
- スタンダード添加:未知濃度、傾き、スタンダード添加曲線の相関性の計算、スタンダード添加曲線のプロット、スタンダード添加データの保存と読込み

- データファイルレポート:指定ピークポテンシャル範囲での保存データファイルから未知濃度を計算、種、キャリブレーション情報、テキスト形式での分析レポートを作成、最大4種類の目的物質の 定義が行える
- ●時間依存:指定ピークポテンシャル範囲での保存データファイルから時間関数として未知濃度を計算、キャリブレーション情報、時間関数としての濃度 レポートを作成またはプロット

デジタルシミュレーション

- 反応メカニズム:(既知定義メカニズム):10(720E以下のモデル)、電子移動、一次、二次化学反応を 含む組み合せ(モデル 730E/750E/760E)
- 系: 拡散、吸着
- 最大式:12
- 最大種:9
- シミュレーションパラメータ:標準酸化還元電位、電子移動速度、移動係数、濃度、拡散係数、フォ ワード、可逆反応速度定数、温度、電極面積、実験パラメータ
- シミュレーションパラメータ保存
- シミュレーションパラメータ読込み
- リアルタイムデータ表示
- 濃度プロフィールのリアルタイム表示
- 無次元電流
- ●平衡データ
- 自動検索、過定量平衡定数の調査

AC インピーダンスシミュレーション

- 等価回路入力の可視化
- 自動等価回路パラメータフィッティング

ビュー

- データ情報:日付、時間、ファイル名、データソース、機器名、行ったデータ処理、ヘッダー、注
- データー覧:データ情報、数値データ配列
- 理論式: 一般式、電気化学テクニックに関連した理論式
- クロック
- ツールバー
- ステータスバー

ヘルプ

- 状況ヘルプ
- 索引
- ヘルプの使用法
- アプリケーションについて

1.4 必要なシステム構成

オペレーティングシステム:	マイクロソフトウインドウズ 7/8
プロセッサー:	ペンティアム以上
RAM:	4 GB
モニター:	VGA
マウス	USB 2.0
通信ポート:	USB 2.0
出力デバイス:	ウインドウズにてサポートされるプリンター

1.5 ハードウェアー仕様

ポテンショスタット	
ガルバノスタット (Model 840D/842D 以上	1)
ポテンシャル :(Model 840D/842D 以上)	±10 V
電流:	± 10 mA
最大電圧:	± 12 V
4 電極組合せ	
参照電極の入力インピーダンス:	$10^{12} \Omega$
高速 ADC:	16bit@1 MHz
電流最大範囲:	$1 \times 10^{-10} \sim 0.001 \text{A/V}$ 範囲の $10 \nu \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
最低電流測定:	1pA
自動再ゼロ:	ドリフトに対して両電位、電流
セルコントロール:	パージ、攪拌、ノック
RDE 回転速度制御:	$0 \sim 10,000 \text{ rpm}(0 \sim 10 \text{V voltage})$
大きさ:	32 (幅) × 25 (奥行) × 12 (高さ)cm
重さ:	約 5.4Kg

2.1 組込み

ソフトウェアー:

機器はウインドウズ環境下で起動するウインドウズパソコンで制御できます。ハードウェ アーは Core5 以上の CPU プロセッサーが要求され、キーボード,4GB RAM,ハードディスクド ライブ、VGA モニター、マウス、USB ポート、パラレルポート、ウインドウズでサポートし ているプリンターまたはプロッターが必要です。

ウインドウズの取扱いについてはウインドウズのユーザーマニュアルを参照して下さい。 機器のソフトウェアーをインストールする場合、添付のフロッピーディスクを"xxxxx.EXEファ イルをダブルクリックします。

1.ALSxxx フォルダーが自動的に作製されます。

2. マイコンピューターのCドライブを開きます。

3. ディレクトリーを見付け、ALSxxx.exe ファイルを見付けて下さい。ところで、xxx はモ デル番号です。

4.マウスの左ボタンでそのファイルをクリックし、マウスの左ボタンを押しながら、グループ画面からモニターにアイコンを移動しますと、ショートカットアイコンが表れます。
 5.ショートカットキーをダブルクリックしますと、プログラムが開始されます。

ハードウェアー:

システムのハードウェアーの組込みは簡単、容易です。機器が入っているダンボール箱 から機器を取出し、使用する電源を確認します。交流電源が工場で前もって設定され、裏面の シリアル番号に表示されています。交流電源が正しい場合、機器の電源ソケットに電源ケーブ ルを接続します。

パソコンの通信ポート (Com Port1) または USB ポートと機器の通信ポートを9ピンの通 信ケーブルまたは USB ケーブルで接続します。ソフトウェアーで最適なポート設定を行う必要 があるかもしれません。セットアップメニューのシステムコマンドにて行えます。通信速度の 心配も不要です。

図 2.1 シリアルポートまたは USB ポートの選択 2つのジャンパー (矢印)は設定に使用します。 写真 1 は RS-232C シリアルポートの選択になります。 写真 2 は USB 設定になります。

通信に USB ポートを使用する場合、機器内部のジャンパーの位置を変更し、ソフトをイン ストールする必要があります。600E シリーズは出荷前に厳密な試験を行っており、PC と接続 して Linked Failed エラーが発生する場合、コンピューターのシリアルポートに起因したトラブ ルであることがあります。考えられる理由としてはウインドウズのシリアルポートのインター ラプトの優先順位は低いため、他のデバイスによる影響で通信ができないことが起こります。 そのような場合、スクリーンセーバーを OFF, インターネット接続を OFF, ウイルススキャン ソフトを OFF にして下さい。

ネットワークカードを使用しないで下さい。ネットワークはバックグラウンドインタラプト を発生し、測定器とパソコンの間のデータ通信に影響します。

裏パネルに電極ケーブルを接続します。白は参照電極、赤はカウンター電極、作用電極は緑 です。

裏パネルのセルコントロールはパージ、攪拌、水銀滴下のコントロールに使用します。モデル 200B ピコアンペアブースター、モデル 680C アンペアブースター、モデル 684 マルチプレク サー等を接続します。詳細については付録を参照して下さい。

BAS 社製の RRDE-3A 回転ディスク電極装置をお持ちの場合、モデル 600E シリーズからの RDE 制御は可能です。裏面パネルにある 2 つのバナナジャックの電圧は 0 ~ 10 V となり、0 ~ 10,000 rpm 回転速度に相当します。

これで機器の用意が完了しました。

2.2 試験

出荷される前に装置は検査されています。ディスクに収められている・.bin データファイル は計測したデータです。

コンピューターと装置の通信を試験する場合、ソフトを起動し、装置の電源を入れます。セットアップメニューのハードウェアーテストコマンドを使用します。Linked Failed メッセージが 表れた場合、ケーブルの接続とポートの設定をチェックして下さい。セットアップメニューの システムコマンドを使用して、ポートの設定が適切かどうかを確認して下さい。

ハードウェアーのテスト結果がスクリーンに表れた場合、通信は働いています。全ての機能がOKならば、ハードウェアーテスト結果はモニターに表示されます。

システムが最適に計測を行っているかを確認する場合、100kΩの抵抗をダミーセルとして 使用します。参照極(白)、カウンター 極(赤)は100kΩの抵抗片側に接続し、作用極(緑) はもう一方に接続します。セットアップメニューのパラメータコマンドを使用して、0.5V ~ -0.5 Vのポテンシャルを選択します。コントロールメニューの測定コマンドを使用して計測を 行います。測定結果として直線(大きなスロープ)が見えるでしょう。

ソフトウェアーの効率を試験するために、ファイルメニューの開くコマンドを通してデータ ファイルを開くことができます。ソフトウェアーにはテストデータがあります。これらのデー タは本装置で測定したデータです。ファイルを選択、OK ボタンをクリックし、ファイルを開 けます。またはファイル名をダブルクリックします。データを読み込んだ後、データを表示し たり、データ処理を行うことができます。グラフィックス、データ処理メニューのすべてのコ マンドを使用して下さい。

2.3 役に立つヒント

ウインドウズアプリケーションをよく使用する方には簡単にこの装置を操作することが出来ます。 次のポイントはウインドウズ経験の少ない方のためのポイントですが、いくつかは装置を使用する上 で便利なポイントになるでしょう。

- ツールバー(メインメニューバーの下にあるボタンがたくさん付いているバー)の操作に慣れます。 ツールバーはよく使用するコマンドに素早くアクセスできます。コマンドボタンの意味はボタン を押すとスクリーンの左下にコメントが表示されます。
- 2. 多数のファイルをプリント、多重、パラレルプロットするために多数のファイル名を同時に選択します。選択したい最初のファイル名をクリックして、マウスの左ボタンを押しながら下にドラッグします。多数のファイルが選択されます。ファイルがディレクトリ中にまとまらない場合、Ctrlキーを押しながら各ファイルをクリックして選択できます。
- 3.Y 軸のタイトルの方向が違う場合、グラフィックメニューのフォントコマンドを使用して、プリントするためのY 軸の回転角度を変更できます。
- 4. アイテムをダブルクリックすることによってファイルやテクニックを選択できます。
- 5. タブキーを使用すると各アイテムに移動して、パラメータを変更することが出来ます。編集ボック ス中のテキストがハイライトされます。直接新しいテキストを入力できます。時々、マウスのクリッ ク&ドラッグを使用するよりも早くて便利です。
- 6.装置の内部的ノイズはとても小さいです。最も一般的で最も大きなノイズ源はライン周波数(60 Hz か50 Hz)です。ノイズを削減するためにアナログローパスフィルターがあります。スキャン速度0.1 V/sの時、自動カットオフ設定は150 Hzか320 Hzです。ライン周波数がパスして、ノイズが現れます。スキャン速度0.05 V/sの時、フィルターのカットオフ周波数は15か32 Hzで、ライン周波数のノイズが効果的に削減されます。サンプル間隔が電源ライン周期の倍数に設定する場合、ライン周波数ノイズは削減できます。小さい信号と比較的早い測定にはファラデーケージをお薦めします。
- データを異なる形式に表示する場合、グラフィックメニューのグラフオプションコマンドを使用し ます。使用可能なデータ表示形式は本マニュアルの 6-1 ページを参照して下さい。

2.4 USB ドライバーのインストール

2.4.1. はじめに

ALS/CHI 800D シリーズにおいて USB の接続が可能です。ドライバーのインストールは、新規に使用する時だけです。

2.4.2. インストール手順

BAS でインストールした場合、このドライバーのコピー手順は必要ありません。 始めに、パソコン のCドライブに新規フォルダーを作成します。このフォルダーにドライバーのディスク又はCDから ファイルをコピーしておきます。

1. モデル 800D の電源を切り、ALS マシンとコンピュータを USB ケーブルで接続します。接続した後、 モデル 800D の電源を入れます。

2.4.3. USB ドライバーのインストール

2.4.3.1. インストール CD内にある「CP210x Windows Driver」→「CP210xVCPInstaller.exe」をダ ブルクリックします。

2.4.3.3. 器械本体 (ALS/CHI) と PC を USB ケーブル で繋ぎ、器械本体 (ALS/CHI) の電源を ON にする。 「マイコンピュータ」のプロパティをクリックして、 デバイスマネージャーを開き、「Silicon Labs CO210x USB to UART Bridge (COM#)」のプロパティを開きま す。

※ COM #の#は専用ソフトと同じポート設定にして下さい。

E+F/10(8)	19200	9
チータビットロ	i .	-
NUTAB	b L	
2 Hot BHS	t	
30-460(E)	61	
	RTW.	武士(書、武才在

2.4.3.4. ビット / 秒「19200」、データビット「8」、パリティ「なし」、ストップビット「1」、フロー制御「なし」と 入力します。次に詳細設定 (A) をクリックします。

Silicen Laberatories Silicen Laberatories OP210	USB ta UART Bridge
etallation Location	Driver Version 5.4
Officers File/Stabe/MCU/O	23ba
	I manual statements

2.4.3.2. 任意の場所にインストールを行って下さい。 「Install」をクリックして、インストールを開始します。

(Em1.495	AGABLE UNIO ENO MALINEMOS			-
MIDH	HERER, BRESSLOORS			1472
-		 8.04	- 14	PERS
million .	81	 -	15	

2.4.3.5. ウンドウズ XP では COM ポートを選べます ので、専用ソフトと同じポートに設定して下さい。

43838 (* 60He (* 50He	540 EX 4078
REN R Postin Lat C Postin Spri	
C Postina (p. 17)	
#####	ADDIGTING STAT
17 Gethalio Positive 17 Jessão Positive	9-58 (1896)
	CORE CORE

2.4.3.6. ALS ソフトのシステムセットアップを開き、 「通信ポート」を PC 側のポートと同じにして下さい。

2.5 本体のセットアップ

1. 本マニュアルに記載した電気化学測定器は専門知識を有する研究者が使用するために設計されてい ます。調整、メンテナンス、修理は本マニュアルを熟読の上行なって下さい。精密な器機ですので、 取扱いには十分気を付けて下さい。修理等のサービスが必要な場合、ビーエーエスにご連絡下さい。

2. 高感度測定を必要とする場合、器機を設置する場所、電源環境等を考慮の上最適な場所に設置して ください。化学物質などの影響がなく、水平バランスが取れている実験テーブルをご利用ください。 腐食物質、腐食性ガス雰囲気下のような場所は避けて下さい。

3. 本計測器の上に測定用セル等を置いて実験しますと、サンプルの飛散等の危険がありますので、こ のような測定は避けて下さい。また、器械内部にサンプルが侵入した場合、最寄の代理店にご相談下 さい。本体の定期的な清掃は必要ありませんが、本体に水分などが付着した場合など乾燥タオルで拭 取って下さい。使用しますコンピューターなどの傍で薬品などを使わないよう気を付けて下さい。

4. セルケーブルの腐食が起こらないよう気を付けて下さい。チェック方法としては IM Ω 抵抗を用いて、 ± 1 V 範囲、感度を 1 × 10⁶ とし、最大電流 ± 1 μ A の直線が得られます。作用電極は抵抗の 片端に接続し、カウンター、参照極は抵抗の残り端に接続します。接続は間違えないよう気を付けて 下さい。

5. 実際の電気化学計測を行った時、期待したデータがでない原因は誤ったセルケーブルの接続、参照 電極の劣化、作用電極の汚れ等の要因であることが頻繁に見られます。スタンダードサンプルを用い て電気化学データを取ることにより、正しい測定を行って下さい。

6.装置のカバーを頻繁に取り外さないで下さい。

7. 使用する試薬に関する MSDS シートを収集し、安全な取扱い方法をマニュアル化することをお勧めします。

8. トラブルが発生した場合、ビーエーエスにお問合せ下さい。装置のハードウェアーテストでエラー が頻繁に発生した場合、どのようなエラーが表示されているかをメモにして下さい。その内容をお知 らせ下さい。

9. PC に接続する装置の周りにはスペースを空けてください。ファンの空気循環ならびに電極等の取扱いに差し支えない空間を確保して下さい。

10. 電極の接続には付属のセルケーブルを使用して下さい。ワニロクリップの腐食には気を付けて下さい。接触不良の原因となります。

14

2.6 電源投入

送付されてきました段ボールを開封しますと、

- 1. 電源ケーブル
- 2. セルケーブル
- 3. マニュアル (CD)
- 4. 電気化学アナライザー本体、USB ケーブル
- 5. 注文してある場合、電極関係のセル

本体は交流 100V ~ 230V/50 ~ 60 Hz で使用できるよう設計されています。本体の背面をチェックして頂きますと、電源ケーブルを挿入するソケットがあります。出荷前に使用する電源は調整してあります。

電源ケーブルは通常壁にあります電源コンセントに接続します。この時、電源のグラウンドが取れていることを確認してください。グラウンドが取れていませんと、ノイズの原因となります。ヒューズは本体の電源ソケットの中に組み込まれています。ヒューズの規格は 250 V, 0.4 A です。

電気化学アナイラザーの電源をオンにしますと、前面のインジケーターが点燈します。

本体の背面の説明

パワースイッチ 本体のオン / オフスイッチ
 ヒューズ 250 V, 0.4 A
 電源ソケット IEC タイプ
 冷却ファン 0.8 A

3.1 ファイルを開く

次のオプションは選択するファイルを指定します:

ー回で一つのデータのみを読み込みできます。これはアクティブデータです。ファイルが読 み込まれた後、メモリーは最新のデータと交換されます。そして、グラフィックは更新され ます。テクニックと実験パラメータもまた更新されます。

このソフトはマルチドキュメントインターフェースを使用するため、この手順を繰り返すことによって多数のファイルを開くことが出来ます。

下記の図はファイルを開くコマンドダイアログボックスです。

pen				? ×
ファイルの場所の:	🔂 data		- 🖻 🙋 🖻	8-8- 0-0- 8-6-
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca2.bin	Ca3.bin Cc1.bin Cc2.bin Cp1.bin Cv1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dnpv.bin	Dpa2.bin Dpv1.bin Dpv2.bin Dpv3.bin Imp1.bin Imp2.bin	I I I I I I I I I I I I I I I I I I I
▼1 ファイル名(N):	r			
ファイルの種類(<u>T</u>):	Binary Data Files	s (*.bin)	• * *	ンセル

次のオプションにてファイルを選択します:

ファイル名

ファイル名を入力または選択する。このボックスはタイプボックスのリストファイルで選択 できる拡張子を持つファイルを一覧します。

拡張子を入力する必要はありません。システムは自動的にファイルに拡張子を付けます。

ファイルタイプの一覧

ファイルタイプの選択。"bin"(バイナリファイルデータ)のみが利用でます。

ドライブ

システムが保存するファイルのドライブの選択。

ディレクトリー

システムが保存するファイルのディレクトリーの選択。 このコマンドはファイルを開きます。

3.2 名前を付けて保存コマンド

ファイルに名前を付けて保存するコマンドです。

下図は名前を付けて保存するダイアログボックスです:

名前を付けて保存				? ×
保存する場所(1):	🔂 Data		🖸 🖻 💆 🖻	
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca1.bin	Ca3.bin Cc1.bin Cc2.bin Cc2.bin Cv1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dnpv.bin	Dpa2.bin Dpv1.bin Dpv2.bin Dpv3.bin Dpv3.bin Imp1.bin Imp2.bin	I I I I I I I I I I I I I I I I I I I
4				F
ファイル名(N):	I		(深	存(<u>S</u>)
ファイルの種類(①)	Data Files (*.bin)		* *	even

次のオプションは保存するファイルの位置、名前を指定します:

ファイル名

現在のデータ、変数を保存するために新しいファイル名をタイプします。ファイル名は8文 字まで入力できます。存在されたファイル名を使用した場合、システムは警告を発生し、次 に進みます。

拡張子をタイプする必要はありません。システムは自動的に拡張子をファイルに付けます。 データファイルの場合、拡張子 "bin"(バイナリーファイル)です。 マクロファイルの場合、 拡張子 "mcr" です。シミュレーションファイルの場合、拡張子 "sim" です。他の拡張子は許 可されていません。

タイプファイルの一覧

開きたいファイルのタイプを選択します。"bin"(バイナリーファイルデータ)のみが利用で ます。

ドライブ

システムが保存するファイルのドライブの選択。

ディレクトリー

システムが保存するファイルのディレクトリーの選択。 このコマンドはファイルを保存します。

3.3 削除コマンド

このコマンドを使用すると、ファイルを削除します。 下図はファイル削除ダイアログボックスです:

ファイル肖明余				?>
ファイルの場所の	🔁 Data		🖸 🖻 💆	
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca2.bin	Ca3bin Cc1.bin Cc2.bin Cc2.bin Cv1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dnpv.bin	Dpa2. Dpv1. Dpv2. Dpv3. Imp1.1 Imp2.1	bin <table-cell> I bin 💯 I bin 💯 I bin 💯 I bin 💯 I</table-cell>
<u> これ</u> ファイル名(N):	*.bin			上 厭(@)
ファイルの種類①	Data Files (*.bin)		•	キャンセル

次のオプションは削除したいファイルの位置、名前を特定します:

ファイル名

削除したいファイル名を選択またはタイプします。このボックスはタイプボックスのリスト ファイルにて選択する拡張子を持つファイルを一覧します。 多数のファイルを削除するため に、Ctrl ボタンを押しながら、選択したいファイル名にマウスを移動し、Ctrl キーを押しな がら、左マウスボタンをクリックします。

システムは特定された拡張子を削除タイプボックスに追加します。

タイプのファイル一覧

削除したいファイルのタイプの選択。

ドライブ

削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

3.4 修復コマンド

このコマンドを使用しますと、測定中のハードディスクに保存してあるデータを元に戻しま す。実験が外部干渉または中断、通信エラーにより終了しない場合、部分的なデータは回復で きます。これはスキャン速度が遅い実験の場合、有効です。何時間も掛かる測定データを修復 できます。

このコマンドはデフォルトでは有効ではありません。遅いスキャン走査実験を行わない場合、

または事故により実験が中断した場合、 再測定して下さい。このコマンドを有効 にする場合、セットアップメニュー下の システム コマンドを使用して下さい。" 測定中のデータ修復保存"オプションを チェックして下さい。

最後の測定データを修復したい場合、 測定開始前に行って下さい。新規測定が 行われますと、最後の測定データは失わ れます。

建位出一ト	电位输	OK
(F Con) (* Con) (* Con)	(* Positive Let) (* Positive Bidal	\$4700 ~1/760
Comi	438M	
Cont	@ Postine Up	
COmL	C Positive Down	
	43612	
(F \$0 Hz	@ Ontodo Positive	
(* 50 Hz	C Acode Pathe	7-98 FERK -
9-62F9		◎ 測定の間接後子一支を体存する
G Excitiv	C Drivetal	「現在のテージを接触の留告

3.5 プログラムの更新コマンド

このコマンドを使用すると、機器内部のソフトウェアーをアップデートできます。このコマンドを使用する場合、ユーザーマニュアルの付録のソフトウェアー更新の取り扱いを必ず参照して下 さい。

フラッシュメモリーを更新する場合、ヘキサデシマルファイル (Als/CHIxxxx.HEX, ここでは xxxx はモデル番号です) が必要です。次の操作を行なって下さい:

1. PC サイドの Als/CHIxxxx プログラムを終了します。

2. 機器の電源を切ります。

3. 側面のネジを外し、上部カーバーを取り外します。

- 4.9 ピンシリアル通信コネクターの近傍にバックスライドスイッチがあります。スイッチ位置 を "Download" に変更して下さい。.
- 5. 機器の電源を入れます。

6. PC サイドの Als/CHIxxxx プログラムを立ち上げます。

7. ファイルメニュー下の " プログラム更新 " を使用してフラッシュメモリー更新ダイアログ ボックスを行います。

8. ダイアログボックスで, use "Browse" ボタンを使用してヘキサデシマルファイル名を選択し ます。次に、"Update" ボタンをクリックしフラッシュメモリーにプログラムをダウンロードし ます。

ダウンロードを失敗した場合、エラーメッセージが現れます。ステップ1からやり直して下さい。

9. ダウンロードが成功した場合、確認メッセージが現れます。機器の電源を切り、バックスラ イドスイッチを元の位置に戻します。機器のカバーを元に戻しネジを止めます。これで機器の アップクレードは終了です。

3.6 データファイル一覧コマンド

このコマンドを使用すると、テキストモードでデータファイルを一覧できます。テキスト フォーマットはテキストファイルフォーマットで変更できます。

現在のデータは変更されずに残っています。現在のデータの数値を一覧する場合、ビューメ ニューのデーター覧コマンドを実行します。

下図はデータファイル一覧のダイアログボックスです:

データファイル一覧				?×
ファイルの場所型:	🔂 Data		💽 🖻 💆	
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca2.bin	Ca3bin Cc1.bin Cc2.bin Cc1.bin Cp1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dpa1.bin	デ Dpa2.b デ Dpv1.b デ Dpv2.b デ Dpv3.b デ Imp1.bi	in <table-cell> I in 💯 I in 💯 I in 💯 I in 🏹 I</table-cell>
【▲】 ファイル名(N):	Ca1 bin			上 問((())
ファイルの種類①	Data Files (*.bin)		<u> </u>	キャンセル

次のオプションはテキストモードで一覧したいファイルの位置と名前を指定します:

ファイル名

ー覧したいファイル名を選択またはタイプします。タイプボックスのリストファイルにて選 択する拡張子を有するファイルを一覧します。

拡張子をタイプする必要はありません。システムは自動的にファイル名に "bin" を付け加えます。他の拡張子は許可されません。

タイプのファイル一覧

一覧したいファイルタイプを選択します。"bin"(バイナリファイルデータ)のみが利用でます。 ドライブ

削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

3.7 テキスト変換コマンド

このコマンドを使用しますと、バイナリーデータファイルをテキストファイルに変換します。 テキストフォーマットはテキストファイルフォーマットにより変更できます。

多数のファイルも変換用に選択できます。多数のファイルを選択する場合、選択したいファ イル名にマウスカーソルを移動し、Ctrl キーを押しながら、左マウスボタンをクリックします。 テキストファイルは他のソフト、例えばエクセル等のスプレッドシートで読み込みできます。 下図はファイル変換ダイアログボックスです:

File Conversion				?×
ファイルの場所型:	🔂 Data		💽 🖻 🙋	1 🖻 🔳
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca2.bin	Ca3bin Cc1bin Cc2bin Cp1bin Cv1bin Cv2bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dpa1.bin	Dpa2 Dpv1 Dpv2 Dpv3 Imp1	2.bin 991 I.bin 991 2.bin 991 3.bin 991 .bin 991 2.bin 991
	Cc2.bin]	■(())
ファイルの種類①	Data Files (*.bin)	5	•	キャンセル

次のオプションはテキストファイルに変換したいバイナリーファイルの位置と名前を指定します: ファイル名

ー覧したいファイル名を選択またはタイプします。タイプボックスのリストファイルにて選 択する拡張子を有するファイルを一覧します。

変換のために多数のファイルを選択することが出来ます。

拡張子をタイプする必要はありません。システムは自動的にファイル名に "bin" を付け加え ます。他の拡張子は許可されません。

タイプのファイル一覧

変換したいファイルタイプを選択します。"bin"(バイナリファイルデータ)のみが利用できます

ドライブ

削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

3.7.1 テキスト変換方法について

データを表示した後、図形データを数値デー タに変換する方法について紹介いたします。 測定したデータから必要な数値データを求め る場合、ファイルの中のテキストファイル形 式を選択してください。

テキストファイル形式を選択しますと、右 のダイアログが表れます。このファイルを表 示した後、図形データを数値データに変換す る方法について紹介いたします。測定したデー タから必要な数値データを求める場合、ファ イルの中のテキストファイル形式を選択して ください。

表示させるのに必要な項目メモ、パラメー タ、結果、数値データをマウスにて選択しま す。エクセルにデータをエクスポートする場 合、データフォーマットを設定する必要があ ります。例えば、コンマ、タブ等です。コン マを選択した後、有効数値(桁数)、データポ イント間隔(電位の解像度)を指定します。次 に、インピーダンスの場合、3カラムインピー ダンスデータを選択します。

表示させる必要があるデータ形式の選択を 行います。グラフオプションを選択します。

グラフオプションを選択してから、右画面 が表示されます。データ (a) のダイアログボッ クスで Capacitance の選択をマウスで行ないま す。

▼ <u>ヘッダー(e)</u> ▼ 軸⊗ ▼ ベー スライン(B) ▼ 変数(m) ▼ 結果(R)	マ ヘッダー(e) マ 軸⊗ マ ペースライン(B) マ 変数(m) マ 結果(R)	 ✓ Xグリッド(G) ✓ Yグリッド(G) ✓ X軸反転(0) ✓ Y釉反転(0) 	0K キャンセル ヘルブ(円)
×軸固定(F) -0.05 Y軸固定(F) -1.5e-0	T <u>o</u> : [0.5 06 To: [5e-006	カーソル?	をデータポイントに固定 – Jock ll Free
×軸タイトル(①)	, 单1	±	旅密度(<u>u</u>)
, Y軸タイトル(<u>T</u>)	¥1	立: 電極	面積(0) 1
iスケール(<u>S</u>) [1 ΓΕν	:参照電極(y)
			and the second

2011-2 日 AUF-5 日 AUF-50 日 第30 日 第30 日 第30 日 日 第30 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	30.5-2- 戸 5-92-(4) 戸 16(5 戸 15-15-15-05) 戸 15-15-15-05 戸 15-15-15-05 戸 15-15-15-05 戸 15-15-15-05 戸 15-15-15 戸 15-2- 日 15-2-	9115F70 12 x21 12 x 12 x	бак ок 54700 (472-84) М (472-84) Бак (472-84) Бак
	n /@ fas		- カーソルモデータポイントに勘定 (** Lock #* Pass
E	a pro-	100	- C #2860
- W90.400			BRING P
18.20-20 5-30 (20020	₩2.7-6 F		- Fard State)

この画面を開いてテキストに変換 (c) をマウス で選択してください。

データが保存されているディレクトリーが表 示されます。変換したいデータをマウスにて 選択しますと、自動的にテキスト形式に変換 されます。変換されたデータはデータが保存 されている同じディレクトリーに保存されま す。

テキストデータの内容をチェックしたい場合、 ウインドウズのメモ帳で読み込んで表示させ ます。日時、測定条件、パラメータ、結果、 測定データが転送されます。不要な項目はテ キストファイル形式のダイアログボックスで 必要な項目のみ選択して下さい。

CONTRACTOR OF CONT		10.00
nitate direct comp norms saw 4, 2002 (11.5213) G. Veltametrix Ter: c:Ter: documentrial (MR0aRdateRev1.tat) ter: Source: Exercitant ter: Source: Exercitant ter: source: Bodat: 01.008	── 測定条件	j
Intel		
set E 100 + 0.5 inst E 000 + -0.05 see E 000 + 0.005 see E 000 + 0.004 see E 000 + 0.005 recentrise (Brit > 1 sector Fiver (Sect) + 1 sector Fiver (Sect) + 2 singt 1 + 000 + 000 + 5 = 0 sector Fiver (Sect) + 2 sector Fiver (Sect) + 2	―― パラメータ	
a + 0.338/ a = 1. No-Eb w = 1. 118e-TH	結果	
viential/V. TotalCi/O. In placeCv/O. Out-of-place	Ki/AD, Resistance John)	
1458. J. BODa-J., T. Millar-B., T. KESa-J., J. H74+4 (492, J. H1ba-7, T. Millar-B., L. KESa-7, Z. KFSa-4 (493, T. H75a-7, T. KFSa-7, L. KESa-7, Z. KFSa-4 (493, T. H75a-7, T. KFSa-7, L. KESa-7, Z. KKSa-4 (494), T. KFSa-7, T. KFSa-4, L. KESa-7, J. KKSa-4		
		417

3.8 テキストファイルフォーマットコマンド

このコマンドを使用すると、テキストモードでデータフォーマットを選択できます。下図は テキストファイルフォーマットダイアログボックスです:

	-XYセバレーター	OK
	(の)マバロ	±
▼ パラメーター(円)	C 97(T)	++> =10
▼ 結果(R)	C 2x-2(S)	<u></u> ~
▶ 数値データ(№)	○ 行送り(上)	
Fータポイント間隔 CVLSVデータ用デジシ SECM データ用エクセル		
- SEOM ギーク田 ナノフユ	ープヘッダー	

次のオプションはテキストフアイルフォーマットを指定します:

メモ

一覧したい日付、時刻、テクニック、ラベル、注等があれば、このチェックボックスにチェッ クします。

パラメータ

一覧したい実験パラメータがあれば、このチェックボックスにチェックします。

結果

一覧したい実験結果、例えば、ピークまたは波形ポテンシャル、電流、面積があれば、この チェックボックスにチェックします。一覧したい項目を選択した後、グラフィックメニー下 のピーク定義コマンドを実行します。

数値データ

一覧したい数値データポイントがあれば、このチェックボックスにチェックします。

セパレーター

X,Y データ組で使用される(コンマ、タブ、スペースまたはラインフィード) セパレーター を選択します。データ組は次のフォーマットの一つを有します。:

 X,Y
 (コンマ)

 X
 Y
 (タブ)

 X Y
 (スペース)

 X
 Y
 (ラインフィード)

 データフォーマットは市販のソフト、例えばスプレッドシート、データベースと互換です。

有効数値

このコマンドはテキストファイルの有効数字の数を設定します。有効数字のデフォルトは4桁です。ほとんどのアプリケーションに満たす条件です。最大10桁の有効数字に変更できます。しかしながら、有効数字の桁数が多くなると、データファイルも大きくなります。

データポイントインターバル

このコマンドで部分的にデータポイントを読み込み、表示することができます。データ分析やデー タファイルサイズを縮小するのに役立つます。しかし、データの詳細を失う可能性があます。

CV とLSV データ用の DigiSim フォーマット

このコマンドは、CV と LSV データのみに使用します。このボックスにチェックを入れると、テ キストデータファイルは直接 DigiSim に読み取れるフォーマットになります。

エクセル3D形式

このコマンドは SECM イメージデータ用です。このボックスがチェックされますと、データファ イルはエクセルの3D 表面プロットに直接読み取れます。

- エクセル 3D 表面プロットを実行するために、次の操作を行って下さい。
- 1. エクセルをスタートする
- 2. テキストデータファイルを開く
- 3. "テキストインポートウイザード-ステップ 1/3" ダイアログボックスが表示されます。"Next" ボタンを押します。
- 4. "テキストインポートウイザード-ステップ 2/3"ダイアログボックスが表示されます。テキストファイルフォーマットに使用したデータセパレータにマッチするために、"Delimiters"を選択。
 5. "テキストインポートウイザード-ステップ" 3/3 ダイアログボックスが表示されます。"Finish"ボタンを押します。データを収容するスプレッドシートが表示されます。
- 6. スプレッドシート中の全てのデータポイントを選択して下さい。
- 7. ツールバーに"ChartWizard"ボタンを見つけ、押して下さい。
- 8. スプレッドシートのデータエリアにマウスを移動し、左ボタンを押します。
- 9. "ChartWizard" ダイアログボックスステップ 1/5 が表示されます。"Next" ボタンを押します。
 10. "ChartWizard" ダイアログボックスステップ 2/5 が表示されます。3D Surface を選択して、"Next" ボタンを押します。
- 11. "ChartWizard" ダイアログボックスステップ 3/5 が表示されます。"1"か"2"を選択して、 Next"を押します。
- 12. "ChartWizard" ダイアログボックスステップ 4/5 が表示されます。"一連のデータ列"、"X軸 ラベルの第一列を使用する"、"Y軸ラベルの第一カラムを使用する"を読込みます。"Next"ボ タンをクリックします。
- 13." ChartWizard" ダイアログボックスステップ 4/5 が表示されます。前もって決めた説明、チャー トタイトルを加え、X,Y,Z の軸タイトルを入力します。その後、"Finish" ボタンをクリックします。 14. スプレッドシートのデータエリアに 3D surface plot が表れます。グラフのサイズを変更する にはカーソルの形がサイズ変更カーソルに変わるまでカーソルをグラフの角に移動します。マウ スの左ボタンを押しドラッグします。グラフが大きくなったり、小さくなったりするのを見るこ とができます。
- 15. グラフを選択し(グラフをクリックする)、コピー(編集メニューのコピーコマンドを使用する、 またはツールバーのコピーボタンをクリックする)することによって、グラフをワード等にペー ストし、印刷できます。
- データ密度が高く、データポイントの接続線をハッキリ見ることができない場合、データポイン ト間隔を1より大きくして下さい。

ナノスコープヘッダー

これはSECM イメージデータ用です。 このボックスがチェックされますと、ヘッダーがテキスト ファイルに加わり、データファイルは 3D プロット用ナノスコープソフトウェアにて直接読み込み できます。

3.9 テキストファイルインポートコマンド

このコマンドはテキストファイルをインポートします。ALS/CHI テキストファイルならび に BAS 社のテキストファイルデータを読み込むことができます。下図はテキストファイルイン ポートダイアログボックスです:

port Text File			<u>?</u> ×
ファイルの場所①:	🔁 data	- E 🖻	* 📰•
Cv1.txt Cv2.txt Cv3.txt Cv3.txt Cv4.txt Lsv1.txt Mcv1.txt	I Mcv2.txt I Ocpt.txt		
 ファイル名(<u>N</u>): コー (11 の話話をない)	Ov1.txt		■ 開((①)

ALS/CHIファイルの場合、メモ、パラメータがありませんと、ファイルの読み込みは行いません。BAS社のテキストファイルとはフォーマットが異なりますのでご注意下さい。

3.10印刷コマンド

ドキュメントを印刷するためのコマンドです。印刷出力はスクリーンで見たものと同じです。 印刷出力をカスタマイズする場合、グラフメニューのグラフオプションを使用します。

紙の種類はランドスケープになります。警告が表れた場合、紙の種類を設定するためにプリントセットアップを使用します。この設定はプログラムを終了した時、記憶されません。紙の種類を永続的に設定する場合、メインウインドウのプリントマネージャーを用いて、プリンターセットアップコマンドを実行します。

このコマンドはツールバーボタンで印刷を開始します。

3.11 多重ファイル印刷コマンド

ドキュメントを印刷するためのコマンドです。印刷出力はスクリーンで見たものと同じです。 印刷出力をカスタマイズする場合、グラフメニューのグラフオプションを使用します。 下図は多重ファイル印刷ダイアログボックスです。

多重ファイルED刷				? ×
ファイルの場所型:	🔂 Data		💽 🖻 💆	
Acv1.bin Acv2.bin Acv3.bin Be1.bin Ca1.bin Ca2.bin	Ca3.bin Cc1.bin Cc2.bin Cc2.bin Cv1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Ppa1.bin	Dpa2.t Dpv1.t Dpv2.t Dpv2.t Dpv3.t Imp1.t Imp2.t	oin <table-cell> I oin <table-cell> I oin <table-cell> I oin <table-cell> I oin <table-cell> I oin 🏹 I</table-cell></table-cell></table-cell></table-cell></table-cell>
4				Þ
ファイル名(N):	Ov2.bin			開(()
ファイルの種類①	Data Files (*.bin)	1	×	キャンセル

次のオプションは印刷したいバイナリーデータファイルの位置と名前を指定します: ファイル名

一覧したいファイル名を選択またはタイプします。タイプボックスのリストファイルから選 択する拡張子を有するファイルを一覧します。 多数のファイルを選択するためには、マウス カーソルを選択したいファイル名に移動し、Ctrl キーを押しながらマウスの左ボタンを押し ます。

拡張子をタイプする必要はありません。システムは自動的にファイル名に"bin"を付加えます。 他の拡張子は許可されません。

タイプのファイル一覧

印刷したいファイルタイプを選択します。"bin"(バイナリファイルデータ)のみが利用できま す

ドライブ

削除したいファイルのドライブの選択。

ディレクトリー

削除したいファイルのディレクトリーの選択。

3.12印刷セットアップコマンド

このコマンドを使用すると、プリンター、プリンターの接続を選択できます。下記図は印刷 セットアップダイアログボックスです:

名前(N):	FPSON LP-8300		プロパティ(P)
于能	」」コート・コート・コート・コート・コート・コート・コート・コート・コート・コート・		
(水温)。 種類:	EPSON LP-8300		
場所:	#¥Epson_lpr¥172.16.0.83(LP-8300)		
紙		一印刷の向き	<u>ŧ</u>
サイズ(Z):	A4 210 × 297 mm 💌	1.49	● 縦(_)
給紙方法(S):	用紙トレイ	A	€横(<u>A</u>)

次のオプションはプリンターの選択と接続を指定します。

プリンター

使用したいプリンターの選択を行います。デフォルトプリンターを選択または特定プリン ターオプションの選択、ボックスで示されるインストールされた最新のプリンターの一つを 選択します。プリンターをインストールし、ウインドウズコントロールパネルを用いてポー トの設定を行います。

オリエンテーション

ポートレイトまたはランドスケープを選択します。このアプリケーションのペーパーオリエ ンテーションはランドスケープです。警告が表れた場合、用紙の種類を設定するための印刷 セットアップコマンドを使用します。この設定はプログラムを終了した時メモリーされませ ん。用紙の種類を永続的に設定する場合、プリンターを完全にランドスケープに設定する必 要があります。メインウインドウのプリンターマネージャーを起動し、プリンターセットアッ プコマンドを実行します。ワードのようなソフトはデフォルトセッティングを各ソフトにお いて保存します。グローバルセッティングはそれらのソフトに影響しません。

用紙サイズ

印刷するドキュメントの用紙サイズの選択

用紙の供給

プリンターはサイズの異なる用紙を収納するマルチトレータイプがあります。ここでトレーの指定を行います。

オプション

プリンターの選択、印刷を指定するためのダイアログボックスを表示します。

3.13 終了コマンド

アプリケーションを終了するためのコマンドです。

終了する時、ファイルディレクトリー、システムセットアップ、コントロール状況、マクロ コマンド、データ処理オプション、シミュレーションオプション、グラフィックオプション、色、 フォント等、いくつかのシステム情報は保存されます。

ショートカット

マウス: アプリケーションコントロールメニューボタンをダブルクリックします。

キー: ALT+F4
4.1 テクニックコマンド

このコマンドを使用すると、電気化学テクニックを選択できます。 下記図は電気化学テクニックのダイアログボックスです。:

電気化学測定法	×
電気化学テクニック(<u>T</u>):	ОК
Byolio Voltammetry	キャンセル
Byolic Voltammetry Linear Sweep Voltammetry Chronocoulometry Chronocoulometry Differential Pulse Voltammetry Normal Pulse Voltammetry Square Wave Voltammetry Amperometric int Curve Differential Pulse Amperometry Double Differential Pulse Amperometry Triple Pulse Amperometry Bulk Electrolysis with Coulometry Potentiometric Stripping Analysis	<u> ヘルプサ</u>)
	ポーラログラフィー モード(면)

次のオプションは電気化学テクニックの選択を指定します:

テクニックの選択

使用したい電気化学テクニックを選択します。このボックスは装置で利用できるテクニックを一覧 します。選択したいテクニックをダブルクリックすることはテクニックを選択し、OK ボタンをク リックすることと同じです。

ポーラログラフィックモード

このボックスをチェックするとポーラログラフモードを使用でき、水銀滴を成長させ、データポイント毎に滴下させます。

次のテクニックのみにポーラログラフモードが許可されます。階段波 (SCP), 微分パルスポーラログ ラフィー (DPP), ノーマルパルスポーラログラフィー (NPP), 交流ポーラログラフィー (ACP), 第二高 調波交流ポーラログラフィー (SHACP).

一旦ポーラログラフィーモードが使用されますと、ストリッピングモードは使用できません。コン トロールメニューのストリッピングモードコマンドを使用してストリッピングモードに設定する場 合、ポーラログラフィーモードを未チェックにする必要があります。

このコマンドは下記の専用ツールバーボタンがあります:

4.2 パラメータコマンド

このコマンドは実験パラメータをセットするために使用します。

システムはパラメータダイアログボックスを表示させ、使用するパラメータを選択します。テクニックによって、パラメータダイアログボックスは異なります。テクニックによるパラメータは次の通り:

サイクリックボルタンメトリーパラメータ (CV) リニアースィープボルタンメトリーパラメータ (LSV) 階段波ボルタンメトリーパラメータ (SCV) ターフェルプロットパラメータ (TAFEL) クロノアンペロメトリーパラメータ (CA) クロノクーロメトリーパラメータ (CC) 微分パルスボルタンメトリーパラメータ (DPV) ノーマルパルスボルタンメトリーパラメータ (NPV) 微分ノーマルパルスボルタンメトリーパラメータ (DNPV) 矩形波ボルタンメトリーパラメータ (SWV) 交流ボルタンメトリーパラメータ (ACV) 第二高調波交流ボルタンメトリーパラメータ (SHACV) アンペロメトリー i-t 曲線パラメータ (i-t) 微分パルスアンペロメトリーパラメータ (DPA) ダブル微分パルスアンペロメトリーパラメータ (DDPA) トリプルパルスアンペロメトリーパラメータ (TPA) 積分パルスアンペロメトリー検出パラメータ (IPAD) バルク電気分解 – クーロメトリーパラメータ (BE) ハイドロダイナミック変調ボルタンメトリーパラメータ (HDM) スィープ-ステップファンクションパラメータ (SSF) マルチポテンシャルステップパラメータ (STEP) クロノポテンショメトリーパラメータ (CP) クロノポテンショメトリー-電流ランプパラメータ (CPCR) マルチ電流ステップパラメータ (iSTEP) ポテンショメトリックストリッピング分析パラメータ (PSA) 電気化学ノイズ測定パラメータ (ECN) オープン回路ポテンシャル-タイムパラメータ (OCP)

各テクニックのパラメータの詳細については、関連ダイアログボックスの項を参照して下さい。 このコマンドは下記の専用ツールバーボタンがあります:

4.3 スィープテクニック(LSV、CV、TAFEL)

リニアースィープテクニックでは、電位は一定のスキャン速度で初期電位から最終電位まで直線的に 変化させます。電流は印加電位の関数としてモニターされます。簡単な LSV の電位波形を図 4-1 に示し ます。

図.4-1.LSV のポテンシャルの波形

LSV を更に汎用的にしたものが CV です。 このテクニックでは、最終電位に達した時、スキャン方向を反転し、同じ電位範囲内で反対の方向に再びスキャンします。フォワードスキャンで生じた電気化 学反応の生成物質を逆スキャンで調べることができます。この特徴が CV テクニックが広く使用される 主な理由の1つです。

CV では、電位は同じ範囲内で何回も繰り返すことができます。初期電位と、スキャンの方向が反転 される高電位と低電位の2つのスイッチングポテンシャルという3つの電位変数が必要です。 CV のポ テンシャル波形を図 10-2 に示します。

図 4-2 に CV の最もシンプルなi-E曲線を示します。 曲線の非対称性は拡散による物質移動により生 じます。この曲線の形に影響を及ぼす多数の他の変数があります。例えば、遅い不均一系の電子移動、酸化或いは 還元種の不安定性、吸着などです。もし不均一系の電子移動速度が速ければ(実験のタイムスケールと比べて)、

図 4-2.CV のポテンシャル波形

そして酸化種還元種両方が安定(実験のタイムスケール上)であるなら、その時、レドックス過程は電気化学的に 可逆的と言れます。そのような系の標準レドックスポテンシャルは2つのピークポテンシャル(E_{pa} と E_{pc})の平 均であり、ピークポテンシャルの差は57/n (mV)です(nは1モル当たりの移動電子数です)。

可逆過程のサイクリックボルタンメトリーではピーク電流は Randles-Sevcik 式で表わされます。

 $i_p = 2.69 \times 10^5 n^{3/2} AD^{1/2} Cv^{1/2}$

i _p = ピーク 電流 (A)	n=equiv/モル
A= 電極面積 (cm ²)	D= 拡散係数 (cm ² /s)
C=濃度 (mole/cm ³)	v= スキャン速度 (V/s)

それゆえに、可逆過程の、i_pは濃度 C とスキャン速度 v¹² に比例します。CV 曲線の形に影響を及ぼす 多数の変数があります。遅い電子移動速度はピークポテンシャルの分離(ΔE_p)を増加させ、電子移動 の速度定数はスキャン速度による ΔE_p の変化を調べることにより算出できます。作用電極と比較電極 間の未補償抵抗もまた同じく ΔE_p を増加させます。未補償抵抗の効果はエレクトロニクスによる iR 補 償により低下させるか、或いは取り除くことができます(コントロールメニューの iR 補償を参照)。

もう1つの CV の用途として電極反応の生成種の反応を研究することがあります。フォワードスキャンで生じた生成種の反応性は折り返しのスキャンやそれ以後に引き続くスキャンにより調べられます。反応速度の定性的評価はスキャン速度を変えて得られます。

簡便性と迅速性のおかげで CV は酸 化還元系を調べる最初の手段としてしば しば使われ、反応速度とメカニズムの定

性的な解析手段として非常に強力なテクニックとさ図4-3.CVの典型的な電流応答 れています。しかし、遅い電子移動効果と化学反応性を切り離すべき方法がないので、CVとLSVは、一般に均一系と不均一系の反応速度の定量的な測定には不向きです。これらの測定には、他のテクニック(例えば、クロノクーロメトリー)の方が一般により適しています。とはいえ、他のテクニックが使われる前に、酸化還元電位を知る必要があり、これはCVによって最も便利に調べることができます。

CVとLSVに現われるバックグラウンド(容量性)電流が定量分析手段としての有用性に制限を与えます。一方、LSVはストリッピングボルタンメトリーによる微量金属の検出に際しては有効な手法になります。

4.3.1 サイクリックボルタンメトリー (CV) のパラメータ

サイクリックボルタンメトリーの表示は以下の通り:

0期增估(XV)	10	OK
态重妆(HOCV)	0	Dance
低重性心的	0	
単体電位(0)	0	
初期スキャン/毎性(E)-	Negative	
スキャン連度担((//s)	1000	
24-7 20x01-00-	1	
サンプル間疇(血)のクニー	0.001	
静止时留但Xeeo)	2	
主席(3)(A/V)	1.4-005 +	
***	Section Tells	
# 45 A/A	0	i 0π
業分量位にい	1	Ganstanit
# # (A/VO	1	CiBoan
ロスマンボー	WsR下の場合: 曲	() Liffsom
最終地位有助		
- スカッン液産が01.5	小以下の場合、「「」	计信号 在記錄

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
高電位 (V)	-10 ~ +10	ポテンシャルスキャン高電位リミット
低電位 (V)	-10 ~ +10	ポテンシャルスキャン低電位リミット
最終電位 (V)	-10 \sim +10	最終電位
初期スキャン極性	Positive または Negative	初期スキャンの方向
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 5,000$	ポテンシャルのスキャン速度
スィープセグメント	$1 \sim 1,000,000$	半サイクルは1セグメント、スィープセグメント
サンプル間隔 (V)	$1 \times 10^{-6} \sim 0.064$	データサンプリング間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
自動感度	チェックまたは未チェック	測定中自動感度で計測
最終電位を有効	チェックまたは未チェック	最終電位でスキャンを終了
対明信号の封建	エーックナクはナエーック	スキャン速度が0025V/s以下の時、同時的に外部信号を記録
補助信 5 77記載	うエックまたは未うエック	する
電極 2:		
電位 (V)	-10 \sim +10	Constant E を選択した場合、第二作用電極の電位
差分電位 (V)	-0.2 \sim +0.2	Diff scan が選択された場合、1Ch の電位差
感度 (A/V)	$1 \times 10^{-10} \sim 0.001$	第二電極の感度スケール
OFF	チェックまたは未チェック	第二作用電極をオフにする
Constant E	チェックまたは未チェック	第二電極を低電位に保持する
Scan	チェックまたは未チェック	第二電極を第一電極と一緒にスキャンする
Diff Scan	チェックまたは未チェック	第一と第二電極間を一定の電位に保持してスキャン

注

- 1. 高電位、低電位は少なくとも 0.01 V 離して下さい。
- 2. 間違えた高電位、低電位が入力した場合、システムは自動的にそれらの値を再調整します。
- 3. 初期電位、高電位、低電位に依存して、システムは自動的に初期スキャン方向を再調整します。
- 4. 最高ポテンシャルスキャン範囲は 13.1 V です。
- 5. スキャン速度が 100 V/s 以下の場合、ポテンシャルの増加分は 0.1 mV です。スキャン速度が 500 V/s の場合、ポテンシャルの増加分は 1 mV です。
- 6. スキャン速度が 500 V/s 以下の場合、サンプル間隔は1mV です。スキャン速度が 1000 V/s の場合サンプル間隔は2mV です。スキャン速度が 5000 V/s の場合サンプル間隔は10mV です。高いスキャン速度の場合、データサンプリング間隔は自動的に増加します。電極2が有効な場合、サンプル間隔は高スキャン速度では2倍になります。
- スィープセグメント数が大きくなると、データサンプリング間隔は自動的に 0.02 V まで増加し ます。スキャン速度が 0.5 V/s 以上の場合、スィープセグメント数はメモリサイズ (64000 ポイ ント)により制限されます。スキャン速度が低い場合、指定のスィープセグメントは実行され ますが、セグメントの限界数だけが保存されます。スィープセグメントを大きくすると、電極 の前処理に有効です。
- 8. スキャン速度が 0.01 V/s 以下の場合、測定中の感度は自動的に電流レベルに応じて変更されま す。自動感度が起動された時、感度選択は測定には影響がありません。しかし、 $10^{-12} \sim 0.1$ A/V の代わりに自動感度範囲は $10^8 \sim 0.1$ A/V です。ピコアンペアブースターは動作しません。よ り高い感度を選択するためには自動感度の設定を OFF にする必要があります。
- 9. スキャン速度が 0.25V/s 以下の場合、ボルタモグラムと同時に外部電圧信号 (分光器信号等)を 記録できます。信号入力用の背面の9 ピンDコネクターを使用します。ユーザーマニュアルに ピンアウトを参照してください。
- 10. 第2電極が ON の場合、補助信号の記録チャンネルは OFF になります。
- 11. 第2電極が ON の場合、第2電極の電位は実験中第1 電極と同じになります。第2電極の電位 は独立していません。
- 12. 最終電位有効をクリックしますと、最終セグメントは最終電位で停止します。

4.3.2 リニアースィープボルタンメトリー (LSV) パラメータ

リニアースィープボルタンメトリーパラメータダイアログボックスを示します。:

四期面位(1/V)	0	OK
最终都位(E)(M	0	キャンセル
スキャン速度(2)(1/14)	0.1	A 11-70-0
サングル間隔(金)(い)	0.001	OV2/O
靜止(奇間)@Xsec)	2	
感度(5)(A/V)	1.e-006 💌	
電極2		
要待 (4)	10 51	IF OH
変分間1位F (1/)	10	C Constant E
GEF (1/M)	1 000	C Scar
 ニスキャン速度が001 V/ ニーマーン電位として詳止電 	小水下の場合、自動な 切立(2)	at

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 5,000$	ポテンシャルスキャン速度
サンプル間隔 (V)	$1 \times 10^{-6} \sim 0.064$	データサンプリング間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャンする前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
自動感度	チェックまたは未チェック	測定中自動感度で計測
補助信号の記録	チェックまたは未チェック	スキャン速度が0025V%以下の時、同時的に外部信号を記録する
電極 2		
電位 (V)	-10 \sim +10	Constant E を選択した場合、第二作用電極の電位
差分電位 (V)	-0.2 \sim +0.2	Diff scan が選択された場合、1Ch の電位差
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第二電極の感度スケール
OFF	チェックまたは未チェック	第二作用電極をオフにする
Constant E	チェックまたは未チェック	第二電極を低電位に保持する
Scan	チェックまたは未チェック	第二電極を第一電極と一緒にスキャンする
Diff Scan	チェックまたは未チェック	第一と第二電極間を一定の電位に保持してスキャン

- 注
- 1. 高電位、低電位は少なくとも 0.01 V 離して下さい。
- 2. 最高ポテンシャルスキャン範囲は 13.1 V です。
- 3. 速いスキャン速度の場合、データサンプリング間隔は自動的に増加します。
- 4. スキャン速度が 500 V/s 以下の場合、電位増加分は 1 mV です。スキャン速度が 500 V/s の場合 電位増加分は 1 mV です。
- 5. スキャン速度が 500 V/s 以下の場合、サンプル間隔は 1 mV です。スキャン速度が 1000 V/s の場 合サンプル間隔は 2 mV です。スキャン速度が 5000 V/s の場合サンプル間隔は 10 mV です。高 いスキャン速度の場合、データサンプリング間隔は自動的に増加します。電極 2 が有効な場合、 サンプル間隔は高スキャン速度では 2 倍になります。
- 6. スキャン速度が 0.01 V/s 以下の場合、測定中の感度は自動的に電流レベルに応じて変更されます。自動感度が起動された時、感度選択は測定には影響がありません。しかし、10⁻¹²~0.1 A/Vの代わりに自動感度範囲は 10⁻⁸~0.1 A/Vです。ピコアンペアブースターは動作しません。より高い感度を選択するためには自動感度の設定を OFF にする必要があります。
- 7. スキャン速度が 0.25V/s 以下の場合、ボルタングラムと同時に外部電圧信号 (分光器信号等)を 記録できます。信号入力用の背面の9ピンDコネクターを使用します。ユーザーマニュアルに ピンアウトを参照してください。
- 8. 直線分極抵抗プロットはグラフメニュー下にあるスペシャルプロットコマンドにて実行できま す。
- 9. 第2電極が ON の場合、補助信号の記録チャンネルは OFF になります。

4.3.3 ターフェルプロット (TAFEL) パラメータ

ターフェルプロットパラメータのダイアログボックスを示します。

初期電位0,XV)	3	OK
最終電位(E)(V)	0	キャンセル
スィーフセグメント(<u>S</u>)	1	へルブ(日)
最終電位での保持時間(H)(s)…	0	
スキャン速度(<u>R</u>)(V/s)	0.01	
静止時間(<u>Q</u>)(sec)	2	
感度(S)(A/\/)	1 4 005 55	

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
スィープセグメント	$1 \sim 2$	スィープセグメント、1/2 Cycle が 1 セグメント
最終電位での保持時間 (s)	$0 \sim 100,000$	1番目のセグメント後、ポテンシャル保持時間
スキャン速度 (V/s)	$1 \times 10^{-6} \sim 0.1$	ポテンシャルスキャン速度
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキヤン開始前の静止時間
感度	$1 \times 10^{-12} \sim 0.001$	感度スケール
自動感度	チェックまたは未チェック	測定中の自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 腐食速度計算はは分析メニュー下にあるスペシャル分析コマンドにて実行できます。

4.4 ポテンシャルステップテクニック(CA, CC, STEP)

これらのテクニックでは、ポテンシャルをある値から第2の値に変化させ、電流(クロノアンペロメ トリー)または電荷(クロノクーロメトリー)応答を時間の関数としてモニターします(電荷は電流の 積分であることに注意)。ある時間τの間第2の電位に保持した後、ポテンシャルを(しばしば元のポ テンシャル値である)第3の値に変化させます。それゆえに、ポテンシャルステップ実験はシングルス テップ、またはダブルステップとなります。

ー般変数 はクロノアンペロメトリーとクロノクーロメトリーでわずかに異なります。クロノアンペ ロメトリーの場合、初期電位(初期 E)と高電位、低電位が必要となります。 ポテンシャルを初期電位 から低電位 または高電位 に変化させます (これは初期 P / N変数によって決まります)。時間 τ (パル ス幅)経過後に、ポテンシャルは反対の方向(低電位から高電位または高電位から低電位)に変化させ、 τ 時間この値の電位に保持します(図 4-4 参照)。クロノクーロメトリーの場合、ポテンシャルは初期 電位(初期 E)と最終電位(最終 E)となります(図 4-5 参照)。

電流/電荷応答は初期電位と最終電位値に依存します。もしファラディー反応がどちらの電位でも起 こらないなら(ファラディー反応とは溶液での分子の電気分解です)、応答は電極の充電による電流と なります(充電即ち容量性電流またはバックグラウンド電流)。その応答は電流スパイクで指数関数的 に減少します。

しばしば、初期電位はファラディー反応が起こらない電位にし、最終電位はファラディー反応が迅速に起こる電位にします。即ち、電気化学活性な分子は作用電極の表面に到着するとすぐに電気分解されます。電流の大きさはバルク溶液から作用電極表面への物質移動速度により決まります。即ち、拡散速度です。拡散支配による電流は下記の Cottrell 式によって与えられます。

$$i = \frac{nFAD^{1/2}C}{\pi^{1/2}t^{1/2}}$$

ここで

i =電流 (A) n =電子移動数/分子当たり、 F = ファラディー定数 (96,500C/mole) A = 電極面積 (cm²)、 D = 拡散係数 (cm²/s) C = 濃度 (mol/cm³)、 t = 時間 (s) 拡散支配によるファラディー電流は t^{-1/2} で減衰します(典型的なクロノアンペログラム、図 4-6. 参照)。 拡散支配による電荷(Q_{diff})の同様な式は上式の積分となります(即ち、Qは t^{-1/2} に比例)。そして典型的なクロノクーログラムを図 4-7. に示します。

図 4-6. CA クロノアンペログラム (電流 - 時間応答)

図 4-7. CC のクロノクーログラム (電荷 - 時間応答)

CAとCC測定法は直線プロットの勾配を用いてn、C、A、Dの内の1つを決めるために使われます。 但し、4つのパラメータの内3つは既知でなければなりません。 しかし、他のテクニック(例えば、後述のパルステクニック)の方が検出下限は低く、そのためCAとCCは濃度測定には一般に使われません。 AとDはしばしばこれらのテクニックを使って測定されています。

iとt^{-1/2}またはQとt^{1/2}の間の関係は電流(または電荷)が拡散によって厳密にコントロールされる時間間隔を調べるために使用されます。図4-8.は時間に対するi/t^{-1/2}のプロットです。 短時間における理論値からのズレはステップポテンシャルで作用電極を充電するのに必要な時間の長さによります。 長時間における理論値からのズレは自然対流によるものです。

図 4-8. 電気化学システムの平面拡散条件における時間ウインドウを模式的にあらわす i / t^{-1/2} (CA) プロット

CAとCC測定法は絶対濃度測定には使用しませんが、電解された分子の均一系化学反応による濃度 変化を測定するために使用されます^(3,4)。これはダブルステップテクニックを使い、フォワードとバッ クワード電流(電荷)の比を測定することにより行なわれます。もしフォワードステップで電解後に生 成物が化学反応を起こすならば、これらの生成物分子は逆ステップで電解用に供給されにくくなります。 それ故、化学反応が速くなればなるほど、逆ステップでの電流/電荷は小さくなります。化学反応速度 は異なったパルス幅による電流(または電荷)比を測ることにより算出されます。

もし電子移動が迅速に起こらない値を最終電位にするならば、電流(または電荷)応答は拡散速度と 同様不均一電子移動速度によって影響されるでしょう。従って 電子移動速度は CA と CC によって測定 されます (5)。 CC は CA に比べて幾つかの利点があります。 シグナルは時間と共に増加します。応答の後半部分は はじめに集中する充電電流により歪められないので、良い S/N 比が得られます。加えて、電荷が実験中 に加算されるので、初期応答からのインフォメーションも保持されます。

初期情報を保持することができる点を利用する別の CC の応用は作用電極の表面に吸着した種の検出 です 。このような種はポテンシャルが変化するやいなや、非常に速く電解されます。 クロノクーロメ トリーの間に測定される総電荷は

$$Q = Q_{diff} + Q_{dl} + Q_{ads}$$

 Q_{dl} は作用電極の充電による電荷量、 Q_{ads} は吸着種の電解による電荷量で吸着物質の表面濃度に比例します。 3つの成分のうち、 Q_{diff} だけが時間に依存します。従って、Anson プロットの切片は $Q_{dl} + Q_{ads}$ になります。 Q_{ads} を算出する1つの方法はバックグラウンド溶液で CC 実験を行なうことにより Q_{dl} を測定し差を求めることです。

しかし、これは電気化学活性な種の有無に関わらず Q_{dl} は同じであると仮定しています;。これは必ずしも真実ではありません。一層正確な方法はダブルステップ CC を使うことです。 Q_{dl} はフォワード/リバースの Anson プロット(図 4-9.)の切片の差を計算することにより除去できるからです。

図 4-9. フォワード / リバースの Anson プロット

4.4.1 クロノアンペロメトリー (CA) パラメータ

クロノアンペロメトリーパラメータのダイアログボックスを示します。:

辺期電位(<u>)</u> XV)	3	ОК
高電位(<u>H</u>)(V)	0	キャンセル
医垂位(L)(V)	0	
初期ステップ極性(P)	Negative 👻	~~~~
ステップ数(N)	2	
パルス幅(<u>W</u>)(sec)	0.25	
サンブル間隔(<u>v</u>)(sec)	0.001	
静止時間(<u>Q</u>)(sec)	2	
感度(<u>S</u>)(A/V)	1.e-006 👻	
- 電極 2	No	1
電位 (V)	0	[□ On
	protocol and a second s	E Stan

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
高電位 (V)	-10 ~ +10	ポテンシャルスキャン高電位リミット
低電位 (V)	-10 ~ +10	ポテンシャルスキャン低電位リミット
初期スキャン極性	Positive または Negative	初期ステップの方向
ステップ数	$1 \sim 320$	ポテンシャルステップ数
パルス幅 (sec)	$1 \times 10^{-4} \sim 1,000$	ポテンシャルパルス幅
サンプル間隔 (s)	$1 \times 10^{-6} \sim 10$	サンプリング間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルステップ開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
妹明侍日の討府	イ いちナチルナイ いち	サンプル間隔が 0.01 sec より大きい時、同時に外部
補助信方の記録	ナエックまたは木ナエック	信号を記録する
電極 2:		
電位 (V)	-10 \sim +10	ステップをしない場合、第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第2電極の感度スケール
ON	チェックまたは未チェック	定電位での第2作用電極
Step	チェックまたは未チェック	第二電極電位のステップ

- 1. 高電位と低電位は少なくとも 0.01 V離して下さい。
- 2. 不合理な高電位、低電位が入力された場合、システムは自動的にそれらの値を再調整します。
- 3. 初期電位、高電位、低電位値に依存しますので、システムは自動的に初期ステップ方向を再調 整します。
- 4. 最大ポテンシャルステップ範囲は 13.1 V です。
- 5. 短いサンプル間隔はデータ密度を上げますが、S/N 比は減少します。初期のトランジェントデー タが重要な場合短いサンプル間隔が薦められます。目的のデータが後半部分であれば、長いサ ンプル間隔が薦められます。しかし、サンプリング速度が許可されない場合、ステップ当り最 小100 ポイントは必要です。
- 6. サンプル間隔が 0.002 Sec より短い場合、データはリアルタイムベースで PC に転送できません。 実験終了後、データ転送します。測定オプションのセルオンが選択されていない場合、データ 転送の間、セルはオフにします。実験開始からデータ転送まで遅延があります。内部メモリー サイズ (64 K)の限界によりデータのトータル数は 64 K が限界です。サンプル間隔は自動的に 最適範囲のデータポイントに調整されます。
- サンプル間隔が 0.002 Sec より長い場合、データは実験間に転送できます。最大 64 K のデータ ポイントは各ステップで許容されます。サンプル間隔は自動的に最適範囲のデータポイントに 調整されます。
- 8. サンプル間間隔が 0.005 Sec 以上の場合、電流と同時に外部電圧信号 (分光器信号等)を記録で きます。信号入力用の背面の9ピンDコネクターを使用します。ユーザーマニュアルのピンア ウトを参照してください。
- 9. 第2電極のステップを設定した場合、電位は第一電極と同じになります。独立していません。

4.4.2 クロノクーロメトリー (CC) パラメータ

クロノクーロメトリーパラメータダイアログボックスを示します。:

初期電位0,XV7	0	ок
最終電位(EXV)	0	キャンセル
ステップ数(<u>N</u>)	2	
バルス幅(sec)	0.25	~1070
サンブル間隔(y)(sec)…	0.002	
静止時間(<u>Q</u>)(sec)	2	
感度(<u>S</u>)(A/V)	1.e-6 C/V +	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 \sim +10	初期電位
最終電位 (V)	-10 \sim +10	最終電位
ステップ数	$1 \sim 320$	ポテンシャルステップ数
パルス幅 (sec)	$1 \times 10^{-4} \sim 1,000$	ポテンシャルパルス幅
サンプル間隔 (s)	$1 \times 10^{-6} \sim 10$	サンプリング間隔
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルステップ開始前の静止時間
	$1 \times 10^{-12} \sim 0.001$	咸田フケール
窓戌 (A/ V)	$1 \times 10^{-9} \sim 1 \times 10^{-6} \text{C/V}$	

注:

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 最高ポテンシャルステップ範囲は 13.1 V です。
- 3. 実際のインテグレータ(チャージ-電圧コンバーター)を選択できます。この場合、感度は1× 10⁹~1×10⁶C/Vです。チャージは8×10⁶クーロンを超える場合、インテグレータのコンデ ンサーは放電され、充電は以前の値に追加されます。高充電はインテグレータで測定できます。 コンデンサーの放電によりチャージ-タイム曲線の不連続性があるかもしれませんが、この不 連続性は無視できます。測定に重要であれば、電流-電圧コンバーターを選択し、ソフトによ り測定した電流を積分します。
- 電流 電圧コンバーターがクロノクーロメトリーに理想的でない、二重層キャパシタンスまた は表面反応において、特に初期の一時的なデータが重要である場合、チャージ - 電圧コンバー ターは良い選択です。
- 5. 短いサンプル間隔はデータ密度を上げますが、S/N 比は減少します。初期のトランジェントデー タが重要な場合短いサンプル間隔が薦められます。目的のデータが後半部分であれば、長いサ ンプル間隔が薦められます。しかし、サンプリング速度が許可されない場合、ステップ当り最 小1,000 ポイントは必要です。
- 6. サンプル間隔が 0.002 Sec 秒より短い場合、データはリアルタイムベースで PC ら転送できません。実験終了後、データ転送します。測定オプションのセルオンが選択されていない場合、データ転送の間、セルは OFF にします。実験開始からデータ転送まで遅延があります。内部メモリーサイズの限界によりデータのトータル数は 64 K が限界です。サンプル間隔は自動的に最適範囲のデータポイントに調整されます。
- サンプル間隔が 0.002 Sec より長い場合、データは実験間に転送できます。最大 64 K のデータ ポイントは各ステップで許容されます。サンプル間隔は自動的に最適範囲のデータポイントに 調整されます。
- 8. 測定中、オーバーフロー警告が表れるかもしれません。これはポテンシャルステップ後すぐに 電流トランジェントによるものです。Anson プロット (Q-t^{1/2} plot)のインターセプト(二重層の キャパシタンスと吸着の情報を与える)に興味がない場合、その警告を心配する必要はありま せん。しかし、データの歪みを視覚化する場合、感度スケールを低下させなければなりません。 時々、システムをスローダウンするために i/E コンバーターを使用する必要があるかもしれま せんが、フィルターの時間定数(1/カットオフ周波数)はパルス幅より短いことを確認してく ださい。

ノイズを減少させ、測定精度を向上させるために、高感度感度スケールの使用を薦めます。

4.5 パルステクニック

リニアースイープテクニックの不利な点の1つはバッククラウンド(容量性電流)電流の存在です。 そのためこれらのテクニックを濃度の定量に使うことは、得策ではありません。検出限界はこのバック グラウンド電流によって影響されます。

すべてのパルステクニックの基礎はポテンシャルステップ後のバックグラウンド電流とファラディー 電流の減衰速度に差があることです。バックグラウンド電流は指数関数的に減衰し、一方、ファラディー 電流は 1/(time)^{1/2}の関数として減衰します。即ち、バックグラウンド電流の減衰速度はファラディー 電流よりかなり速く減衰します。バックグラウンド電流はポテンシャルステップ後、5 Ru Cdl 時におい て無視できます(Ru Cdl は電気化学セルの時定数で μ s ~ ms 範囲になります)。それゆえ、この時間後は、 測定電流はファラディー電流だけになります。

パルステクニックの重要な変数は次の通りです。

a. パルス振幅はポテンシャルパルスの高さで、mV表示です。

b. パルス幅はポテンシャルパルスの継続時間で、msec 表示です。

c. サンプル幅は電流が測定されるパルスの経過時間(msec)です。少なくともパルス幅より3 msec 短く なければなりません(3 msec は容量性電流がゼロに減衰するために必要)。電流は msec 当たり16 回サ ンプリングされ平均されます。サンプル時間のデフォルト値は17 msec です。つまり、これは商用電源(60 Hz)の1 サイクルの時間です(従ってラインノイズは平均化してゼロになります)。

d. パルス間隔 / 滴下時間-これは1 ポテンシャルサイクル (msec) に必要とされる時間であり、少なく ともパルス幅の二倍でなければなりません。パルス間隔がボルタンメトリー実験に使われ、滴下時間は ポーラログラフィー実験、- ポテンシャルパルス、電流サンプリングと水銀滴の滴下は相互連関して います。

ポテンシャルパルス波形とサンプリング時間数が異なった3つのパルステクニックを紹介します。 バックグラウンド電流を除去できれば、感度の向上と低い検出下限とあいまって(リニアースイープテ クニックと比較して)これらの方法は濃度が定量できる理想的なテクニックです。

階段波ボルタンメトリー / ポラログラフィー (SCV/SCP)

直流ポーラログラフィー実験の改良版で、水銀滴の表面積の変化の効果を減少するように設計されて います。ポテンシャル波形を図 4-10. に示します。

ポテンシャルは一定のステップで変化します(滴 下時間サイクルと完全に同期させます)。電流は 各々の滴下の終了時にサンプリングされます。滴 下時間とステップのサイズを種々の値に設定でき ます。このポテンシャル波形は時には階段波形と も言います。

図 4-10. SCP のポテンシャル波形

電流応答は図 10-11. に示します。限界電流(i_d)は Ilkovic 式によって与えられます。

図 4-11. SCV の典型的な電流応答

$$i_d = 706nD^{1/2}Cm^{2/3} \tau^{-1/6}$$

n = 電子移動数 / モル D = 拡散係数 (cm^2/s) C = 濃度 (mol/cm^3) m = 水銀流速 (mg/s) τ = サンプリング間隔

SCVの感度と検出限界は直流ポーラログラフィー(5µA/mM, 10⁵M)に類似しています。直流ポー ラロに対する SCP の主要な利点はスムージングされた電流出力で、そのため半波電位と限界電流の測定 が容易になります。

これは本質的にはポーラログラフィーテクニックですが、低スキャン速度ボルタンメトリーテクニッ クとして使えます。この改良版は階段状ボルタンメトリーと呼ばれます。

4.6 ノーマルパルスボルタンメトリー (NPV)

これらパルステクニックのポテンシャル波形は図 4-12 に 示します。これはパルス間での初期値に戻る電位と振幅が増 加する一連のパルスから構成されます。もし初期電位が酸化 還元電位より十分正であるなら、小さい振幅パルスの印加で はファラディー反応を起こせず、電流応答がありません。パ ルスポテンシャルが酸化還元電位付近にくるくらい、パルス 振幅が十分に大きい時、パルスに対応したファラディー反応 (適度に速い電子移動速度を仮定して)が起きます。そしてこ のファラディー電流の大きさは拡散速度と電子移動速度の両 方に依存します。パルスポテンシャルが酸化還元電位より十 分負になり電子移動が速く起こるとき、ファラディー電流は

図 4-12. NPV / Pのポテンシャル波形

拡散速度だけに依存するようになります。即ち、限界電流に達します。この電流応答を図4-13 に示し ます。シグモイド波形は古典的なポーラログラフィー実験で得られる波形曲線に類似しています。この 方法に対してノーマルパルス法と呼ぶのはそのためです。NPVの限界電流はSCVより大きく、より高 感度なテクニック(30 μ A/mM)であり、低い検出下限(10⁶ M)が得られます。

図 4-13. NPV / Pの典型的な電流応答

NPV では、初期電位はファラディー反応が起こらない値に設定します。

微分パルスボルタンメトリー (DPV)

DPV テクニックは先の2つのテクニックと異なり、電流 は各パルス間隔で二度サンプリングされます。ポテンシャル 波形は図4-14に示します。パルス振幅は一定であり、ベー スポテンシャルが小さなステップで増加します。即ち、階段 状波形に小さい振幅パルスを重畳しています。

電流はパルス前(i₁)とパルスの終了時(i₂)でサンプリ ングされます。差(i₂-i₁)がベースポテンシャルの関数とし て記録されます。還元を例にしますと、レドックスポテンシャ ルより十分正の電位では電極反応は起こらず、電流差はゼロ です。レドックスポテンシャル近傍では電流差は最大に達し、 拡散律速になると再び電流差はゼロに減少します。ピーク形

図 4-14. DPV のポテンシャル波形

状の出力が得られます(図 4-15 参照)。DPV の感度は NPV と SCV の中間です(20 μ A / mM)。しかし DPV の検出下限はバックグラウンド(容量性)は 10⁻⁷ M 以下になります。

図 4-13. DPV の典型的な電流応答

4.6.1 階段波 (SCV) ボルタンメトリーパラメータ

階段波ボルタンメトリーパラメータのダイアログボックスを示します。

0期電位(IXV)	2	OK
■	0	キャンセル
檀位増加分(E)(V)	0.004	~ 11-74.0
マーフセクメント(S <u>)</u>	1	
ナンブリング幅(<u>S</u>)(sec).	0.01 67	
Rテップ期間(P)(sec)	0.2	
▶止時間(@)(sec)	2	
§度(<u>S</u>)(A/V)	1.e-006 🗸	
電極 2		
● 位 (\/)	0	🗂 On
感度(A/\/)	1.e-006 +	C Scan

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
電位增加分 (V)	$1 \times 10^{-3} \sim 0.05$	各ステップの増加分電位
セグメント	$1 \sim 10,000$	スキャンセグメントの数
サンプリング幅(Sec)	$1 \times 10^{-4} \sim 50$	各ポイントのデータサンプリング幅
ステップ期間 (Sec)	$0.001 \sim 50$	ポテンシャルステップ期間または滴下時間
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
電極 2:		
電位 (V)	-10 ~ +10	第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.1$	第2電極の感度スケール
ON	チェックまたは未チェック	セカンド作用電極を定電位にする
Scan	チェックまたは未チェック	第2電極をスキャンする

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. サンプリング幅はステップ期間の 1/2 以下です、さもなければシステムは自動的にサンプリ ング幅を再調整します。
- 3. データサンプリングは各ステップの終了時に行います。
- 4. 第2電極をスキャンに設定した場合、電位は第一電極と同じになります。独立していません。

4.6.2 微分パルスボルタンメトリー (DPV パラメータ

微分パルスボルタンメトリーパラメータダイアログボックスを示します。

刃期電位QXV)	2	ок
最終電位(EXV)	0	キャンセル
電位増加分(E)(V)	0.004	
振幅(A)(V)	0.05	
パルス幅(W)(sec)	0.05	
サンプリング幅(<u>S</u>)(sec)	0.01 67	
パルス期間(P)(sec)	0.2	
静止時間(@)(sec)	2	
感度(<u>S</u>)(A/V)	1.e-006 🔹	
- 電極 2	1	
●位 (\/)	0	∏ On
感産(4/10)	1.e-006	C Scan

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 \sim +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	\pm 0.001 \sim \pm 0.5	ポテンシャルパルス振幅
パルス幅 (sec)	$0.001 \sim 10$	ポテンシャルパルス幅
サンプリング幅 (sec)	$1 \times 10^{-4} \sim 10$	データサンプリング幅
パルス期間 (sec)	$0.01 \sim 50$	ポテンシャルパルス期間または滴下時間
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
電極 2:		
電位 (V)	-10 \sim +10	スキャンしない場合、第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第2電極の感度スケール
ON	チェックまたは未チェック	セカンド作用電極を定電位にする
Scan	チェックまたは未チェック	第2電極をスキャンする

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. パルス幅はパルス期間の 1/2 以下にします。さもなければ、システムは自動的にパルス幅を再 調整します。
- 3. サンプリング幅はパルス幅の 1/2 以下にします。さもなければ、システムは自動的にサンプリ ング幅を再調整します。
- 4. パルス方向が電位スキャン方向と異なった場合、振幅がマイナスになります。
- 5. 第2電極をスキャンに設定した場合、電位は第一電極と同じになります。独立していません。

4.6.3 ノーマルパルスボルタンメトリー (NPV) パラメータ

ノーマルパルスボルタンメトリーダイアログボックスを示します。:

0期電位0XV)	2	OK
最終電位(E)(V)	0.	キャンセル
■位増加分(E)(V)	0.004	A11-7(H)
パルス幅(<u>W</u>)(sec)	0.05	
サンプリング幅(<u>S</u>)(sec)	0.01 67	
バルス期間(P)(sec)	0.2	
停止時間(Q)(sec)	2	
感度(<u>S</u>)(A/V)	1.e-006 💽	
- 電極 2		
電位 (V)	0	🗖 On
「「「「「」」の	1 +-006	C Scop

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 \sim +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
パルス幅 (sec)	$0.001 \sim 10$	ポテンシャルパルス幅
サンプリング幅 (sec)	$1 \times 10^{-4} \sim 10$	データサンプリング幅
パルス期間 (sec)	$0.01 \sim 50$	ポテンシャルパルス期間または滴下時間
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
電極 2:		
電位 (V)	-10 \sim +10	スキャンしない場合、第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第2電極の感度スケール
ON	チェックまたは未チェック	セカンド作用電極を定電位にする
Scan	チェックまたは未チェック	第2電極をスキャンする

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. パルス幅はパルス期間の 1/2 以下にします。さもなければ、システムは自動的にパルス幅を再 調整します。
- 3. サンプリング幅はパルス幅の 1/2 以下にします。さもなければ、システムは自動的にサンプリ ング幅を再調整します。
- 4. 第2電極をスキャンに設定した場合、電位は第一電極と同じになります。独立していません。

4.6.4 微分ノーマルパルスボルタンメトリー (DNPV) パラメータ

システムは微分ノーマルパルスボルタンメトリーパラメータを表示します。

刃期電位(IXV)		OK
最終電位(EXV)	0	キャンセル
■位増加分(E)(V)	0.004	
毎幅(<u>A</u>)(V)	0.05	
st パルス幅(<u>W</u>)(sec)	0.05	
2nd パルス幅(<u>W</u>)(seo)	0.05	
サンプリング幅(<u>S</u>)(sec)	0.01 67	
パルス期間(<u>P</u>)(sec)	0.2	
静止時間(Q)(sec)	2	
***	1 +-006	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001~\sim~0.5$	ポテンシャルパルス振幅
1次パルス幅 (Sec)	$0.01 \sim 10$	第一次パルス幅
2次パルス幅 (Sec)	$0.01 \sim 10$	第ニ次パルス幅
サンプリング幅 (Sec)	$0.001 \sim 5$	データサンプリング幅
パルス期間 (Sec)	$0.05~\sim~50$	ポテンシャルパルス期間または滴下時間
静止時間 (Sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
初期電位でのオープン回路	チェックまたは未チェック	ステップ1は一定電位または静止電位に保持

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 微分ノーマルパルスボルタンメトリーの場合、第一次ステップのパルスは電気化学反応が起こ らない、通常初期電位に保持します。第二次ステップがサイクル毎に増加されます。電流サン プルは期間の後半部分で行われます。三度目の電位が第二ステップのように増加されますが、 一定強度(振幅)による第二ポテンシャルよりさらにプラス(プラススキャンの場合)またはマ イナス(マイナススキャンの場合)になります。第二サンプルは期間の後半部分で行われます。
 2つの電流サンプルの差は第二ポテンシャル関数として報告されます。
- 3. パルス幅はパルス期間の 1/2 以下にします。さもなければ、システムは自動的にパルス幅を再 調整します。
- 4. サンプリング幅はパルス幅の 1/2 以下にします。さもなければ、システムは自動的にサンプリ ング幅を再調整します。

4.7 矩形波テクニック (OSWV)

矩形波テクニックはパルステクニックと交流ボ ルタンメトリーテクニック両方に関係の深い方法で す。それらは DPV/P に類似して、ピーク波形の電流 応答曲線を与え、バックグラウンド容量性電流を効 果的に除去します。主要な利点は高感度と迅速性で す。

この波形を図 4-16 に示します。

OSWV のポテンシャル波形は階段波形に矩形波 を重畳したものになります。それは方向が交互に変 わる一連のパルス(それ故、パルスと交流テクニッ クの両方に関係している)と見なすことができま す。電流は各パルスの終了点(或いは半サイクル毎

図 4-16. OSVW のポテンシャル波形

に)でサンプリングされます。デフォルト電流出力は差電流として与えられますが(図 10-18)、フォワード電流(i_f)とリバース電流(i_r)も同じく個別に求められます(図 10-19)。可逆系の場合、リバース電流も大きくなり、差電流はフォワード電流或いはリバース電流のどちらよりも大きくなります。これがDPVと較べて OSWV が高感度である1つの理由です。リバース電流の大きさは電子移動の可逆性を調べるのに使われます。

図 4-17. OSWV の差電流応答

図 4-18. OSWV のフォワード電流とリバース電流応答

OSWV の他の利点は DPV/P に比較してそのスピードにあります。5,000 V/S までのスキャン速度が利用できますが、典型的には 100 mV/S ~数 V/S のスキャン速度が使われます(OSWV のスキャン速度は 矩形波周波数に依存する)。これは DPV(10 ~ 20 mV/S)のスキャン速度より格段に速くなります。更に、 DPV と較べて感度は不可逆過程でさえスキャン速度の増加と共に向上します。

OSWV の高感度と高スピードは溶液中の電気化学活性種の定量分析法としての汎用性を増しました。検 出下限はセクション 10 章で論じられるストリッピング法を使うことにより更に下げられます。

4.7.1 矩形波ボルタンメトリー (SWV) パラメータ

矩形波ボルタンメトリーパラメータのダイアログボックスを示す。:

初期電位QXV7	2	OK
最終電位(E)(V)	0	キャンセル
電位増加分(E)(V)	0.004	~ IL-70-0
振幅(A)(V)	0.025	
周波数(F)(Hz)	15	
静止時間(<u>Q</u>)(sec)	2	
感度(<u>S)</u> (A/V)	1.e-006 🗸	
- 電極 2		
● ● 位()	0.	🔽 On
感度(4/\/)	1.e=006	C Scen

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 \sim +10	初期電位
最終電位 (V)	-10 \sim +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.5$	矩形波振幅
周波数 (Hz)	$1 \sim 100,000$	矩形波周波数
静止時間 (sec)	$0 \sim 100,000$	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
電極 2:		
電位 (V)	-10 \sim +10	スキャンしない場合、第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第2電極の感度スケール
ON	チェックまたは未チェック	セカンド作用電極を定電位にする
Scan	チェックまたは未チェック	第2電極をスキャンする

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- フォワード、リバースと電流の差は記録されます。データ表示を設定するためにグラフィック スメニューのグラフオプションコマンドを使用します。
- 3. 第2電極をスキャンに設定した場合、電位は第一電極と同じになります。独立していません。

4.8 AC テクニック (ACV、SHACV)

正弦波の交流テクニックは本質的に2つに分類されます。交流インピーダンス法では、直流ポテンシャル(典型的にはレドックスポテンシャル)は一定に保ち、小さい振幅の交流電位(ある範囲の可変周波数)が印加されます。

交流ボルタンメトリー法は交流インピーダンス 法のバリエーションの1つです。周波数を一定にし て、直流ポテンシャルをゆっくりと変化させます(図 4-19)。作用電極の表面において酸化あるいは還元さ れた種の濃度を変えるために直流ポテンシャルが使

図 4-19. ACV と SHACV のポテンシャルの励起波形

われます。そしてこれらの濃度に摂動を与えるために交流ポテンシャルが重畳されます。交流ポテンシャ

ルの効果はレドックスポテンシャルに おいて最も大きくなります。従って、 ACV における交流電流応答はピーク波 形の曲線になります(図 4-20)。

交流電流応答は電子移動速度に依存 しますので、交流ボルタンメトリーは基 本的に電極過程の反応速度を調べるた めに使われます。これらのテクニック は同じく電極反応生成種の継続して起 こる均一系の化学反応を調べるために 使われます。しかし他のテクニック(例 えば、サイクリックボルタンメトリー、

図 4-20. SHACV の典型的な電流応答

クロノクーロメトリー)は、この方法より優れています。

界面領域の等価的容量により、印加された交流ポテンシャルと交流電流応答間に位相差が生じます。 異なった位相角で交流電流を測定するのがしばしば有用です。

理想的な可逆系の位相角 45°に対して凝可逆系(遅い電子移動の系)では、45°より大きくなります。 可逆性は実験のタイムスケールに依存しますので、交流周波数の増加はしばしば可逆系から凝可逆系へ の変化を生じさせます。(周波数)^{1/2}に対する位相角のコタンジェント(1/tans)のプロットは電子移動速 度を算出するために使用されます。

可逆系のピーク電流 i, は次の式によって得られます。

$$i_p = \frac{n^2 F^2 \omega DC \triangle E}{4RT}$$

n = 電子移動数 F = ファラディー定数(96500 C /eq) A = 電極表面積(cm²) $\omega = 2 \pi x$ (交流周波数) D = 拡散係数(cm²/s) C = 濃度(mol/cm³) $\triangle E = 交流ポテンシャルの振幅$ 系が可逆系から凝可逆系(そして更に不可逆系)へと変化するにつれて、i_pは大幅に減少し、もはや ω¹² に比例しません(かつて不可逆過程は交流テクニックによって検出されないと言われていましたが、 実際はそうではなく、ただそのような系ではピーク電流が小さくなります)。

交流ポテンシャルに対する交流電流応答は直線関係にありません。即ち、それは基本波とその高調波の和になります。セカンドハーモニック(第二高調波SHACV/P)の周波数応答がしばしば使われます。 このテクニックによって得られる情報はACV/PやPSACV/Pと同じです。加えるに、容量性電流の除 去はより効果的であり、タイムスケールは短くなります。SHACVは電気分解された時、迅速に反応す る種の酸化還元電位測定に使用されてきました(サイクリックボルタンメトリー等に比べてSHACVの タイムスケールが短いため、電荷移動後に起こる化学反応の影響が軽減されます)。図 4-21 に SHACV の典型例を示します。

図 4-21. SHACV の典型的な電流応答

4.8.1 交流ボルタンメトリー (ACV) パラメータ

交流ボルタンメトリーパラメータのダイアログボックスを示めします。

]期電位(),\/)	0	ок
終電位(F_XV)	0	キャンセル
。 位増加分(E)(V)	0.004	
(自)(A)(A)	0.025	~10700
∃波数(F_)(Hz)	100	
トンブル期間(<u>S</u>) (sec)	1	
止時間(Q)(sec)	2	
(イアス直流電流	Below 1 Ht -	
態度(S)(A/V)	1.e-006 •	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 \sim +10	最終電位
電位增加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.4$	交流振幅
周波数 (Hz)	1 ~ 10,000	交流周波数
サンプル期間 (Sec)	$1 \sim 65$	データサンプリング期間または滴下時間
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
バイアス直流電流	off — range-on	測定中の直流電流バイアスを有効にする
自動感度	チェックまたは未チェック	測定中の切替えの自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 周波数範囲に依存しますので、正確な周波数は求めることができません。近似値の周波数が適 用されます。
- 3. 周波数が2Hzまたはそれ以下の場合、サンプル期間は少なくとも2秒にします。さもなければ、 システムは自動的にサンプル期間を再調整します。
- 直流電流が高く、交流電流が低い場合、直流電流のオーバーフローにより感度は増加しません。
 周波数が低い場合、問題は深刻です。直流電流バイアスを適用し、高交流信号増幅を行います。
 この目的のために 16 bit DAC が用いられます。直流電流が大きくなく、周波数が高い場合、バイアス直流電流を使用する必要はありません。
- 5. 絶対電流、位相選択電流が入手できます。グラフィックメニューのグラフオプションコマンド を用いてデータ表示オプションを選択できます。

4.8.2 第二高調波交流ボルタンメトリー (SHACV) パラメータ

第二高調波交流ボルタンメトリーパラメータダイアログボックスを示します

0期電位(IXV)	2	ок
最終電位(EXV)	0	キャンセル
電位増加分(E)(V)	0.004	
振幅(A)(V)	0.025	~10700
周波数(F)0Hz)	100	
サンプル期間(<u>P</u>)(sec)	1	
静止時間(@)(sec)	2	
バイアス直流電流	Below 1 Hz 🗸	
感度(<u>S)</u> (A/V)	1.e-006 +	
□ 自動感度(A)	an and a	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.05$	各ポイントの電位増加分
振幅 (V)	$0.001 \sim 0.4$	交流振幅
周波数 (Hz)	$1 \sim 5,000$	交流周波数
サンプル期間 (Sec)	$1 \sim 65$	データサンプリング期間または滴下時間
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキャン開始絵の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
バイアス直流電流	off — range-on	測定中の直流電流バイアスを有効にする
自動感度	チェックまたは未チェック	測定中の切替えの自動感度

- 1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。
- 2. 周波数範囲に依存しますので、正確な周波数は求めることができません。近似値の周波数が適 用されます。
- 3. 周波数が2Hzまたはそれ以下の場合、サンプル期間は少なくとも2秒にします。さもなければ、 システムは自動的にサンプル期間を再調整します。
- 直流電流が高く、交流電流が低い場合、直流電流のオーバーフローにより感度は増加しません。
 周波数が低い場合、問題は深刻です。直流電流バイアスを適用し、高交流信号増幅を行います。
 この目的のために 16 bit DAC が用いられます。直流電流が大きくなく、周波数が高い場合、バイアス直流電流を使用する必要はありません。
- 5. 絶対電流、位相選択電流が入手できます。グラフィックメニューのグラフオプションコマンド を用いてデータ表示オプションを選択できます。

4.9 アンペロメトリーテクニック (i-t)

これらはクロノアンペロメトリックテクニックです。即ち、電流は時間の関数として測定されます。 一般的に、このようなテクニックは電流滴定、アンペロメトリックセンサー、フローセル等に使われます。 利用できる3種類のテクニック間の差は使われるポテンシャル波形です。即ち、ポテンシャル波形は選 択性を改善するために工夫されています。

最もシンプルなポテンシャル波形は固定電位です。これは i-t の波形です。i-t の波形と典型的な電流応 答をそれぞれ図 4-22 と 4-23 に示します。

図 4-22. i-t のポテンシャル波形

図 4-23. i-t の典型的な電流応答

アンペロメトリーポテンシャル波形の1つの変形は一定振幅の連続パルスを重畳します(図4-24)。 これは微分パルス(DPA)テクニックです。電流はパルスの直前とパルスの終了直前にサンプリングさ れます。バックグラウンド電流の効果的な消去を行なうことができます。差電流が表示されますので、 この方法はポテンシャルウインドウをチェックすることができ、検出の選択性を向上するのに役立ちま す。DPA の典型的な電流応答を図4-25 に示します。

4.9.1 アンペロメトリー i-t 曲線パラメータ

アンペロメトリー i-t 曲線パラメータダイアログボックスを示します:

D期電位(IXV)	2	OK
ナンブル間隔(g)(sec)…	0.1	キャンセル
]定時間(T)(sec)	400	~ IL-700
₱止時間(<u>@</u>)(sec)	0	
側定間のスケール(d)	1 +	
或度(<u>S</u>)(A/V)	1.e-006 👻	
- 奄極 2		
電位 (₩)	0	🔽 E2 On
感度 (A/V)	1.e-006	🗖 i2 On

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
サンプル間隔 (Sec)	$1 \times 10^{-6} \sim 50$	データサンプル間隔
測定時間 (Sec)	$0.001 \sim 5 \times 10^5$	トータルの測定時間
静止時間 (Sec)	$0 \sim 100,000$	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール
補助信号の記録	チェックまたは未チェック	サンプリング間隔が 0.005 秒以上の場合、同時的に外
		部信号記録
高分解度 ADC	チェックまたけキチェック	サンプル間隔が 0.002 Sec 以上時に高分解度 ADC を使
	ノエノノよには木ノエソク	用する。
電極 2:		
電位 (V)	-10 \sim +10	スキャンしない場合、第2作用電極の電位
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	第2電極の感度スケール
E2 ON	チェックまたは未チェック	第2作用電極を ON にし、電流サンプリングはしない
i2 ON	チェックまたは未チェック	第2作用電極を ON にし、電流サンプリングを行う

- データサンプル間隔は計測時間により選択します。計測が長い場合、サンプル間隔を大きくし、 長いサンプル間隔にするとシグナルの平均化が向上し、ノイズが低下します。
- 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に2倍になります。
 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 3. サンプル間隔が 0.005 Sec 以上の場合、アンペロメトリー応答と同時に外部電圧信号 (分光器信号のように)を記録できます。信号入力用の背面の9ピンDコネクターを使用します。ユーザーマニュアルのピンアウトを参照してください。

- サンプル間隔が 0.002 Sec 以上の場合、高解像度 ADC はデータサンプリングに用いられます。
 高解像度 ADC は良好な S/N を与えます。データの高解像度により感度設定の依存しなくなりました。
- 5. 電流1が測定中表示される時、自動的にデータにフィットします。電流2が測定中表示される時、フルスケールの1/100、1/10となります。電流3が測定中表示される時、フルスケールの1/100、1/10、1/1となります。
- E2 ON は第2電極電位コントロールで ON にできますが、電流のサンプリングは行いません。
 第2電極をある種のジェネレーター電極として使用する場合、有効です。第2チャンネルの電流を測定する場合、i2 ON をチェックして下さい。

リアルタイムフィルター

データ処理メニューのスムージングと異なり、リアルタイムフィルターはデータサンプリング中に適用 できます。短期の変動 (ノイズ等)をスムージングを目的としています。長期的な傾向やサイクルを強 調します。

必要に応じ第二フィルター(第一フィルタと同じタイプ)を介してデータを渡すと、より良い結果を得 られることがあります。

移動平均:これは、単純なフィルタリング法で、ユーザによって指定されたポイント数の平均値です。 点の数が多いほど、一般的に滑らかなデータになりますが、あまりにも多くのポイントは、一過性のト レンドを分かりにくくすることがあります。この方法は、鋭いステップ応答を維持しながら、ランダム ノイズを低減するために特に有効である。

ブラックマンやハミングフィルタリング法は、周波数領域でのウィンドウフィルタリング法です。移動 平均法とは異なり、これらの方法は、信号とノイズが減衰され、それを超えるカットオフ周波数を指定 します。信号ノイズはランダムで、すべての周波数に存在する場合、移動平均は同じようにうまく動作 します。上手くいかない場合、最適なウィンドウの選択はユーザーニーズに依存します。

ブラックマン:ハミングと比較して、このウィンドウフィルタリング法は、ユーザーが指定したカット オフ周波数(小さな初期ステップ、速い周波数応答に続く減衰)からのさらなる周波数の優れた減衰を 提供します。

ハミング:ブラックマンと比較して、このウィンドウフィルタリング法は、カットオフ周波数(大きな 初期ステップ、周波数応答が遅く、その後の減衰)からさらに少ない減衰、ユーザー指定のカットオフ 周波数に近い周波数の減衰を提供します。

63

4.9.2 微分パルスアンペロメトリー (DPA) パラメータ

微分パルスアンペロメトリーパラメータダイアログボックスを示します:

〕期電位 (∨)	2	OK
リーニング電位(0)	0	キャンセル
フリーニング時間(T)(se	o)[0	A 11 7 (1)
パルス電位(1)(い	0	
パルス時間1(P)(sec)	0.1	
バルス電位2(4)(V)	0	
パルス時間2 (sec)	0.1	
サイクル数	400	
静止時間(Q)(sec)	0	
測定中のスケール(d)	1	

実験パラメータ、範囲、詳細は次の通りです。

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	静止時間中の初期電位
クリーニング電位 (V)	-10 ~ +10	電極クリーニング電位
クリーニング時間 (Sec)	$0 \sim 32$	電極クリーニング時間
パルス電位1(V)	-10 ~ +10	第一パルス電位
パルス時間1(Sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 2 (V)	-10 ~ +10	第二パルス電位
パルス時間 2 (Sec)	$0.01 \sim 32$	第二パルス時間
サイクル数	$10 \sim 100,000$	繰り返しサイクル数
静止時間 (Sec)	$0 \sim 100,000$	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$1.0^{-12} \sim 0.001$	感度スケール
クリーニング中のオー	エーックホカけキエーック	クリーニングステップは一定電位またはオープ
ブンサーキット	フ エック まだは木ブエツク 	ン回路のどちらか一方で行える

- 測定順序はクリーニング、第一パルス、第二パルスからなります。この順序は総サイクル数に 到着またはユーザーにより中止されるまで繰り返されます。クリーニングステップの間、デー タサンプリングは行われません。クリーニング時間がゼロの場合、このステップは無視されます。 データは第一、第二パルス用にサンプリングされ、差が報告されます。
- データはパルス1と2の後半の半期間でサンプリングされます。パルス幅が長くなりますと、 サンプル間隔も長くなります。長いサンプル間隔は良好な平均信号となり、ノイズが少なくな ります。
- 3. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に2倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 電流1が測定中表示される時、自動的にデータにフィットします。電流2が測定中表示される時、フルスケールの1/100、1/10となります。電流3が測定中表示される時、フルスケールの1/100、1/10、1/1となります。

4.9.3 ダブル微分パルスアンペロメトリー (DDPA) パラメータ

第一DPA	ОК
クリーニング電位1(0)(V) 📱	+
クリーニング時間(1)(sec)0	++>>e
パルス電位(1)(V)	<u></u>
バルス時間1(P)(sec) 0.1	
パルス電位(2)(い)	
パルス時間2(u)(sec) 0.1	
┏ クリーニング中のオープンサーキット	
帝二DPA	
クリーニング電位2(g)(V) 0	
クリーニング時間(n)(sec)0	
パルス電位(3)(V)	
パルス電位(3)(V)	初期電位()XV)
パルス電位(3)(V)0 パルス時間3(1)(Sec) 0.1 パルス電位(4)(V)0	 初期電位()(V)
バルス電位(3)(V)	初期電位(),XV)

ダブル微分パルスアンペロメトリーダイアログボックスを示します

実験パラメータ、範囲、詳細は次の通りです。

パラメータ	範囲	内容
First DPA:		
クリーニング電位1(V)	-10 ~ +10	電極クリーニング電位
クリーニング時間 (Sec)	$0 \sim 32$	電極クリーニング時間
パルス電位 1 (V)	-10 ~ +10	第一パルス電位
パルス時間1(Sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 2 (V)	-10 ~ +10	第二パルス電位
パルス時間 2 (Sec)	$0.01 \sim 32$	第二パルス時間
クリーニング中のオー	エーックナキリナエーック	クリーニングステップ1は一定電位またはオー
ブンサーキット	アエックまだは木アエック	プンサーキットのどちらか一方で保持する
Second DPA:		
クリーニング電位 2 (V)	-10 ~ +10	電極クリーニング電位
クリーニング時間 (Sec)	$0 \sim 32$	電極クリーニング時間
パルス電位 3 (V)	-10 ~ +10	第一パルス電位
パルス時間 3 (Sec)	$0.01 \sim 32$	第一パルス時間
パルス電位 4 (V)	-10 ~ +10	第二パルス電位
パルス時間 4 (Sec)	$0.01 \sim 32$	第二パルス時間
クリーニング中のオー	チェックまたけキチェック	クリーニングステップ2は一定電位またはオー
ブンサーキット	ウエックまたは木ケエック	プンサーキットのどちらか一方で保持する
初期電位 (V)	-10 ~ +10	静止時間中の初期電位
サイクル数	$10 \sim 100,000$	繰り返しサイクル数
静止時間 (Sec)	0~100,000	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$1.0^{-12} \sim 0.001$	感度スケール
- 測定順序は first DPA クリーニング、第一パルス、第二パルス、次に second DPA クリーニング、 第一パルス、第二パルスからなります。この順序は総サイクル数に到着またはユーザーにより 中止されるまで繰り返されます。クリーニングステップの間、データサンプリングは行われま せん。クリーニング時間がゼロの場合、このステップは無視されます。データは第一、第二パ ルス用にサンプリングされ、差が報告されます。
 2組のデータが得られます。
- データはパルス1と2の後半の半期間でサンプリングされます。パルス幅が長くなりますと、 サンプル間隔も長くなります。長いサンプル間隔は良好な信号となり、ノイズが少なくなります。
- 3. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に2倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 電流1が測定中表示される時、自動的にデータにフィットします。電流2が測定中表示される時、フルスケールの1/100、1/10となります。電流3が測定中表示される時、フルスケールの1/100、1/10、1/1となります。
- 5. 1次か、2次 DPA か、両方のデータを表示させる場合、グラフィックメニューのグラフオプショ ンコマンドを用いてデータ表示オプションを選択します。

4.10 トリプルパルスアンペロメトリー (TPA)

単純なアンペロメトリーでは還元糖、第一級アミン、チオールの検出は高電位を必要としますので感 度と選択性が低減します。トリプルパルスポテンシャル波形(TPA)は特にこれらの分子に適しています。

名前が示すように3つのポテンシャルパルスが遂次的に印加され、電流はE3パルスの終了時にサン プリングされます。(図4-25)この波形は必要なサイクル数繰り返され、そして電流サンプルの1が時 間の関数として提示されます。(図4-26)(他の2つは後の処理のために保存されます。)糖の検出の場合、 パルス列は次の通り:1番目のパルスは電極表面をきれいにし、表面に酸化層を作ります。第2のパル スは電極に目的の分子を吸着させるポテンシャルです。そしてこれらの分子の検出は3番目のパルスで 行なわれます。これは特殊な例の場合ですから、TPA は多くの電気化学センサーの応用に使用すること ができる一般的な目的の波形と考えるべきでしょう。

図 4-26. TPA の典型的な電流応答

4.10.1 トリプルパルスアンペロメトリー (TPA) パラメータ

トリプルパルスアンペロメトリーダイアログボックスを示します:

BIL .		OK
E (V)		キャンセル
期間 (s) 0.1		ヘルプ(H)
▶ オープンサーキット		
電位 2		
E (V)		
期間 (s) 0.1		
	初期電位0,000	0
垂 位 3	最終電位 (V)	0
A MARK A MARK AND A MARK	_ サイクル数	400
E (V)		
E (V)	静止時間@Xsec)	0

実験パラメータ、範囲、詳細は次の通りです。:

パラメータ	範囲	内容
電位 1 (V)	-10 ~ 10	第一パルス電位
期間1(Sec)	$0 \sim 32$	第一パルス期間
オーブンサーキット	チェックまたは未チェック	ステップ1は一定電位またはオープン回路の
一 一 一 一	10 10	どちらか一方で行える
電位2(V)	$-10 \sim 10$	第二パルス電位
期間 2 (Sec)	$0 \sim 32$	第ニパルス期間
電位 3 (V)	-10 ~ +10	第三パルス電位
期間 3 (Sec)	$0.01 \sim 32$	第三パルス期間
增加分電位 (V)	$0 \sim 0.2$	增加分電位
初期電位 (V)	-10 ~ +10	静止時間中の初期電位
最終電位 (V)	-10 ~ +10	スキャンの最終電位
サイクル数	$10 \sim 100,000$	繰り返しサイクル数
静止時間 (Sec)	$0 \sim 100,000$	データ採取開始前の静止時間
測定間のスケール	1, 2, 3	電流表示スケール数
感度 (A/V)	$10^{-12} \sim 0.001$	感度スケール

- 注:
- 測定順序は first DPA クリーニング、第一パルス、第二パルス、次に second DPA クリーニング、 第一パルス、第二パルスからなります。この順序は総サイクル数に到着またはユーザーにより 中止されるまで繰り返されます。クリーニングステップの間、データサンプリングは行われま せん。クリーニング時間がゼロの場合、このステップは無視されます。データは第一、第二パ ルス用にサンプリングされ、差が報告されます。
 2組のデータが得られます。
- 2. 増加分電位がゼロで無い場合、実験は E3 で開始し、最終電位で終了します。E3 と最終電位は 少なくとも 0.01 V 離して下さい。サイクル数は効果がありません。
- 3. データはパルス1と2の後半の半期間でサンプリングされます。パルス幅が長くなりますと、 サンプル間隔も長くなります。長いサンプル間隔は良好な信号となり、ノイズが少なくなります。
- 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に二倍になります。
 そのためデータポイントは期待されない長い計測でもオーバーフローしません。
- 電流1が測定中表示される時、自動的にデータにフィットします。電流2が測定中表示される時、 フルスケールの1/100、1/10となります。電流3が測定中表示される時、フルスケールの1/100、 1/10、1/1となります。

4.10.2 積分パルスアンペロメトリー検出 (IPAD) パラメータ

積分パルスアンペロメトリーダイアログボックスを示します。

Step 1: スタート			OK
開始電位 (V) 🔋	ホールド電位(V) 0		+ + - 1
ホールド時間(s) 0.2	ホールド時間 (s) 0.2		+7/2/
Step 2: フォワードスキャン			
ビーク電位(V) 0	酸化電位 (V) 0		
スキャン時間(s) 0.2	酸化時間 (s)		
Step 3: リバー ススキャン -	Step 6: 遼元	サイクル数	400
後退電位 E (V) 0	還元電位 (V) 0	静止時間(Q)(sec)	2
スキャン時間(s) 0.2	還元時間 (s) 0.2		1 e-006

実験パラメータ、範囲、詳細は次の通りです:

パラメータ	範囲	内容
ステップ1: スタート		
開始電位 (V)	-3.276 ~ 3.276	開始電位(一定)
倪 挂哇朋 (C)	0.05 . 1	印加電位期間の開始、電流積分はこのステッ
体持时间 (Sec)	$0.05 \sim 1$	プの終了前に 10 msec を開始する
ステップ2: フォワードスキャン		
ピーク電位 (V)	-3.276 ~ 3.276	開始電位からピーク電位まで電位をスキャン
スキャン時間 (Sec)	$0.15 \sim 1$	開始電位からピーク電位までのスキャン時間
ステップ 3: リバーススキャン		
戻る電位 (V)	-3.276 ~ 3.276	ピーク電位から戻る電位まで電位をスキャン
スキャン時間 (Sec)	$0.15 \sim 1$	ピーク電位から戻る電位までのスキャン時間
ステップ4: ホールド		
ホールド電位 (V)	-3.276 ~ 3.276	ホールド電位
	0.05 - 1	ホールド電位期間時間、10 msec 間の電流積分
パールド時间 (Sec)	0.05 ~ 1	と終了
ステップ 5: 酸化		
酸化電位 (V)	-3.276 ~ 3.276	電極処理用の酸化電位
酸化時間 (Sec)	$0.05 \sim 1$	酸化時間
ステップ6: 還元		
還元電位 (V)	-3.276 ~ 3.276	電極処理用の還元電位
酸化時間 (Sec)	$0.05 \sim 1$	還元時間
サイクル数	$5 \sim 65,535$	6ステップを通じたサイクル数
静止時間 (Sec)	$0 \sim 100,000$	データサンプリング前の静止時間
感度 (V)	$1 \times 10^{-12} \sim 0.001$	感度

- 実験の手順は開始電位、フォワード電位スキャン、リバース電位スキャン、ホールド電位、酸 化電位、還元電位と続きます。この手順はトータルのサイクル数、あるいはユーザーによる中 断まで繰り返します。
- 2. 電流は開始電位、フォワードスキャン、リバーススキャンの後半 10 msec の間サンプリングされ、 ホールド電位の最初の 10 msec の間サンプリングされます。
- 3. 測定中、データが最大データポイントを超えた時、データ保存間隔は自動的に2倍になります。 そのためデータポイントは期待されない長い計測でもオーバーフローしません。

4.11 クロノクーロメトリーによるバルク電気分解(BE)

バルク電気分解法(BE)の原理は非常に単純です。もし酸化された種のみが最初に存在するなら、 ポテンシャルを速やかに還元を起こすに十分な負の値に設定し、還元種のみが溶液に存在するまでこの 値を維持します。BE実験中に通った総電荷(Q)はファラデイー法則を通して最初に存在する酸化種の モル数(N)と分子当たりの電子移動数(n)と関連づけらます。

ここでFはファラデイー定数(96,500C/モル)です。従って、もしn或いはNのどちらかが既知ならば、 一方を算出できます。BEは分析と合成の両方に応用できます。

BEに必要なセルはボルタンメトリー実験に必要とされるセルとは異なります(ボルタンメトリーで は目的の電気化学活性分子のほんの一部が電解されるだけです)。大きい表面積(たとえば、白金金網 或いは水銀プール)を持った作用電極と大きい表面積(例えば、白金コイル或いは金網)を持ったカウ ンター電極を使うことによって電解の速度は向上します。作用電極へ出入りの物質移動速度を増やすた め溶液を撹拌します。カウンター電極は作用電極と隔離し、カウンター電極の電解生成物と作用電極で の電気分解種との干渉を防止します。作用電極とカウンター電極を隔離する材料の選択には注意を払わ なければなりません。材料の電気抵抗が大きいと電解の効率に影響を及ぼす可能性があるためです。

BE 実験の前に、ポテンシャルを選択します。還元の場合、理想的なポテンシャルは酸化還元電位(例 えばサイクリックボルタンメトリーにより測定)より約 200 mV 負にします。電解の速度は作用電極へ の物質移動速度によって支配されます。しかしながら他の電気化学活性物質(例えば、電解液、溶媒、 溶液中の他の成分)の電解電位が近いと、酸化還元電位とあまり隔った電位を使用できない場合があり ます。

BE実験中、PCモニターの時計は実験時間を表示します。各データ取り込み時間毎にその間に通った 電流とそれまでの総電荷がモニターに表示されます。1番目のインターバルの平均電流と各インターバ ルの平均電流比も表示されます。この比率は電解の程度を判定するための重要な基準になります。即ち、 この比率が1%(バックグラウンド電流である残余電流)に達した時一般的に電解は終了とみなします。 最終電流比はユーザーによっても設定できます(1%はデフォルト値です)。数値データーに加えて(下 記参照)、電荷対時間プロット(図4-27)または電流対時間プロット(図4-28)で結果が表示されます。

図 4-27. 典型的な BE の電荷 対 時間プロット

図 4-28. 典型的な BE の電流 対 時間プロット

4.11.1 バルク電気分解---クーロメトリー (BE) パラメータ

バルク電気分解--クーロメトリーパラメータダイアログボックスを示します。:

該分解電位(E)(V)	2	OK
最終電流比(E)(K)	0	キャンセル
	1	
前電解電位(P_XV)	0	~~~
前電解時間(T)(s)	0	

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
電気分解電位 (V)	-10 ~ +10	電気分解電位
最終電流比(%)	$0 \sim 100$	この電流比で実験停止
データ保存間隔 (Sec)	$0.01 \sim 100$	データ表示、保存間隔
前電解電位 (V)	-10 ~ +10	前電解電位
前電解時間 (Sec))	$0 \sim 100,000$	前電解時間

- 通常の電気分解の前に前電解ステップが許可されます。これは残存電流を減少させるのに有効 です。前電解終了時の電流は残存電流としてみなされ、トータルチャージから任意のネット チャージを差引きます。前電解時間がゼロの場合、このステップは無視されます。測定停止コ マンドをいつでも押すことにより、前電解は停止します。通常の電気分解はすぐ行えます。
- 2. 実験中感度スケールは自動的に切り替わります。
- 3. 電流比は初期電流に関係します。データ保存間隔が1秒の場合、初期電流は電気分解後の最初 の1秒の平均電流です。
- 最終電流比がゼロの場合、電気分解は永久に続きます。実験を停止する場合、停止コマンドを 実行します。
- 5. 計測中、データはデータ保存間隔と同じ速度で更新されます。
- データ保存間隔は計測時間に応じて選択されます。計測時間が長い場合、データ保存間隔は長くなります。長いデータ保存間隔は良いシグナルを持ち、ノイズが少なくなります。しかし、 薄層セルの場合、短いデータ保存時間は電気分解プロセスの詳細を観察するために使用されます。
- 電気分解中、データが最大データポイントを超えた時、データ保存間隔は自動的に2倍になり ます。そのためデータポイントは期待されない長い計測でもオーバーフローしません。

4.12 ハイドロダイナミックテクニック(HDM)

印加電位への電流応答は多くの因子によって決められます。そのうちでも重要な2点は電子移動速度 とバルク溶液から作用電極表面へ向かう物質移動速度です。 物質移動が起こるには3つの方法があります。

1. 拡散ー濃度勾配による分子運動

2. 泳動ー電界勾配による分子運動

3. 対流ー撹拌等の外乱によって起こる分子運動

ボルタンメトリー実験から定量的データを得るためには、物質移動モードが数学的に解析しやすい形 に定義されていることが重要です。十分解離した電解液の添加によってすべてのボルタンメトリー実験 から泳動の効果が無視できるようにします。拡散と対流だけを考慮する系を選びます。

多数のボルタンメトリー実験で、溶液を撹拌せず、外部の振動を防止することにより対流が除去され ます(このような条件は比較的短時間しか維持されません)。静止溶液状態を使用するボルタンメトリー はサイクリックボルタンメトリー(CV)、クロノクーロメトリー、パルス、矩形波テクニックを含みます。 対流なしの条件を持続することの実験的難しさに加えて、拡散支配の実験は物質移動速度を変える方法 がないことが限界となります。

ハイドロダイナミックテクニックでは、分子はよく定義された仕方で電極表面に運ばれます。すなわち溶液を撹拌するか、或いは液体クロマトグラフィー/電気化学のようにポンプでフローセルに溶液を流します。最も広く採用されている方法は、回転ディスク電極を使って電極を回転することです。

ハイドロダイナミックテクニックは電極表面へ出入する物質移動速度の向上の結果、静止溶液テク ニック以上に多くの利点を持っています。物質移動と電子移動が釣り合う結果、より速い物質移動速度 は定常状態に早く達することができ、スキャン速度が十分に遅い場合にかぎり(典型的には約 20 mV/s 以下)定常状態が維持されます。定常状態ボルタンメトリーの1つの利点はある与えられた電位で電流 がスキャン方向と時間の両方に依存しないことです。この場合、ボルタモグラムはシグモイド曲線にな るのが特徴です。速い物質移動は定量分析の感度を向上させ、回転デイスク電極はストリッピング実験 の析出ステップでよく使用されます。

可逆プロセスの限界電流(物質移動支配の電流)は Levich 式で与えられます

$i=0.62nFACD^{2/3} \omega^{1/2} v$

n = 電子移動数 /mole F = ファラディー定数 (96,500C/mole) A = 電極面積 (cm²) C = 濃度 (mole/cm³) D = 拡散係数 (cm²/s) $\omega = 2 \pi f$ ((回転数) /rps) $\nu = 動的粘度$

従って、可逆プロセスの i₁ 対 ω^{1/2}のプロットは直線(Levich プロット)になります。 この場合、可逆 とは物質移動速度と比較して速い電子移動が必要なこと、即ち、回転速度を増すとレドックス反応は可 逆から凝可逆に移行する可能性があります。これは Levich プロットで 直線性からのズレに表われます。 電子移動速度は回転速度を無限に外挿した時の電流(kinetic current)から算出されます。 この kinetic current は逆 Levich プロット($1/i_1$ 対 $1/\omega^{12}$)の切片から求められます。この方法は腐食 とバッテリーの研究にしばしば使用されます。また電極表面上に被覆したポリマーフィルムを通る電子 移動速度の測定にも使われます。

図 4-29. 典型的な回転速度Aと時間に対する電位波形B

ハイドロダイナミックモジュレーション (HDM) は回転周波数を正弦波的に変化させる関連テクニッ クです。 i₁ はω^{1/2} に比例する一方、ω^{1/2} 自身も変化します。交流電流は通常のデータ処理法で処理され ます。即ち、フィルターを通した後、整流又は位相弁別検出後にデータ処理されます。

Levich 式によれば、i_i=K $\omega^{1/2}$ であり、ここで $\omega^{1/2} = \omega_0^{1/2} + \Delta \omega^{1/2} \sin \sigma t$ (ω_0 は中心回転速度で周波数 σ , 振幅 $\Delta \omega^{1/2}$ のサイン波形で変調されます。図 4-30 参照) 交流電流出力は図 4-31 で示され、 Δ i は下記 式によって与えられます。

$$\Delta i = \left(\frac{\Delta \omega}{\omega_0}\right) i \omega_0$$

図 4-30. HDM テクニックを用いた回転速度の変調

図 4-31. HDM の交流電流出力

図 4-32. RDE の典型的な電流応答

4.12.1 ハイドロダイナミック変調ボルタンメトリー (HDM) パラメータ

ハイドロダイナミック変調ボルタンメトリーパラメータダイアログボックスを示します。

刃期電位0,1℃/	0	OK
最終電位(E)(V)	0	キャンセル
■位増加分∈)(V)	0.004	
回転速度(<u>R</u>)(rpm)	3000	~10700
変調周波数(F)(Hz)	2	
変調振幅(<u>A</u>)(rpm)	100	
サイクル数(N)	1	
静止時間(Q)(sec)	2	
感度(<u>S)</u> (A/\/)	1.e-006 🗸	

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電位 (V)	-10 ~ +10	初期電位
最終電位 (V)	-10 ~ +10	最終電位
電位増加分 (V)	$0.001 \sim 0.02$	各ステップの電位増加分
回転速度 (rpm)	$0 \sim 10,000$	中心部の回転速度
変調周波数 (Hz)	$1 \sim 5$	変調周波数
変調振幅 (rpm)	0~3,600	変調振幅注2参照
サイクル数	$1 \sim 10$	変調サイクル数
静止時間 (Sec)	0 ~ 100,000	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール

注:

1. 初期電位と最終電位は少なくとも 0.01 V 離して下さい。

2. ハイドロダイナミックモジュレーションの実際の回転速度は

$w^{1/2} = w_0^{1/2} + \Delta w^{1/2} \sin(s t)$

注意:変調ファンクションはサイン波ではなく、更に複雑ですが、周波数 σ の定期的な波形です。 回転速度 ω_0 の近傍は変動しますが、変動の振幅は対称ではありません。入力パラメータ $\Delta \omega$ は実際の振幅ではありませんが、上記式での二乗です。

4.12.2 スィープ - ステップファンクションパラメータ (SSF)

スィープ - ステップファンクションパラメータダイアログボックスを表示します。

Sequence 1:スィープ ―――	Sequence 5: スィープ		ОК
初期電位0,100 🔟	初期電位(XV) 0	初期電位0,000 0	
最終電位(E)(V) 0	最終電位(E)(V) 0	最終電位EXV)	
スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1.	<u></u>
Sequence 2: ステップ ――	Sequence 6: ステップ	- Sequence 10: ステップ	
ステップ E (V) 0	ステップ E (V)	ステップ E (V)	
ステップ時間(s) 0	ステップ時間(s) 0	ステップ時間(s) 0	
Sequence 3: スィープ	Sequence 7 スィープ	Sequence 11: スィープ	
の期電位()(V) 0	初期電位(000) 0	初期電位(0,00) 0	-
最終電位(F)(V) 0	最終電位(E)(V) 0	最終電位(E)(V) 0	初期委任人公
スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スキャン速度 (V/s) 0.1	スィープ S.I. (V) 0.001
Sequence 4: ステップ	Sequence 8: ステップ	-Sequence 12: ステップ	ステップ S.I. (s) 0.002
ステップ E (Ѵ) 0	ステップ E (Ѵ)	ステップ E (Ѵ)	静止時間 (sec) 2
ステップ時間(s) 0	ステップ時間(s) 0	ステップ時間 (s) 0	感度 (A/\/) 1 e=006

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
順番 1, 3, 5, 7, 9, 11		
スィープ:		
初期電位 (V)	$-10 \sim +10$	初期電位
最終電位 (V)	$-10 \sim +10$	最終電位
スキャン速度 (V/s)	$10^{-6} \sim 50$	ポテンシャルスキャン速度
順番 2, 4, 6, 8, 10, 12		
ステップ		
ステップ 電位 (V)	$-10 \sim +10$	ステップ電位
ステップ時間 (Sec)	$0 \sim 10,000$	ステップ機関
初期電位 (V)	$-10 \sim +10$	初期電位
スィープサンプル間隔 (V)	$0.001 \sim 0.05$	スィープファンクションサンプル間隔
ステップサンプル間隔 ((Sec)	$0.0001 \sim 1$	ステップファンクションサンプル間隔
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$10^{-12} \sim 0.001$	感度スケール

- 1. スィープファンクションの場合、初期電位と最終電位の差が 0.01 V 以下の場合、このセグメントは無視されます。
- ステップファンクションの場合、ステップ時間が0.001 秒以下か、ポイント数が3以下の場合、 このセグメントは無視されます。ステップ時間を増やすか、サンプル間隔を減少する必要になります。
- 3. スィープファンクションのスキャン速度が 0.5 V/S 以下ならば、データはリアルタイムに転送され、表示されます。
- 4. ステップファンクションのサンプル間隔が 0.002 秒より大きい場合、データはリアルタイムに 転送され、表示されます。
- 5. 初期電位、最終電位、ステップ電位の電位差は13.1 V以下にして下さい。

4.12.3 マルチ - ポテンシャルステップパラメータ (STEP)

マルチ - ポテンシャルステップパラメータダイアログボックスを表示します

ステップ! ステップを(V)	ステップ 5 ステップ 5 (V) [0 フェップが登録(V) [5	275 97 1 275 97 8 (V) 0	
ステップ 2 ステップ 2 ステップ E (V)	ステップ 6 ステップ 6 ステップ 6 (V) (0 ステップ 5 (V) (0	ステップ #10 ステップ # (V) (0 ステップ # (V) (0 ステップ # (型 (a) (0)	~#76
ステップ 0 ステップ E (V) 0 ステップ 時間 (K) 0	ステップ1 ステップ = (V) (0 ステップ = (1) (2) (2)	ステップ 11 ステップ 5(V)	10期考达(V) [0
ステッフィ ステッフモ(V)0 ステップ時間 6) 0	ステップ 9 ステップ 6 M0 ステップ時間 (a) 0	ステップ 12 ステップ 5(V) 0 ステップ 時間 6) 0	サンプル型版 (c) 0.000 神上時間 (co 0) 2 然身(a/y) 1 1-075

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
ステップ順番 1 - 12:		
ステップ 電位 (V)	-10 \sim +10	ステップ電位
ステップ時間 (Sec)	$0 \sim 10,000$	ステップ期間
初期電位 (V)	$-10 \sim +10$	初期電位
サイクル数	$0 \sim 10,000$	サイクル数
サンプル間隔 (Sec)	0.0001 - 1	サンプル間隔
静止時間 (Sec)	$0 \sim 100,000$	ポテンシャルスキャン開始前の静止時間
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	感度スケール

注:

1. ステップタイムが 0.01 V 以下であるならば、このステップはは無視できます。

- 2. ステップタイムはサンプル間隔より短くなる場合、このステップは無視されます。
- 3. (ステップ時間 * サイクル / サンプル間隔) が 64 K を超える場合、または実験後、データ転送 する場合、サンプル間隔は自動的に増えます
- 4. サンプル間隔が 0.002 秒より大きい場合、データは転送され、リアルタイムに表示されます。
- 5. 初期電位、最終電位、ステップ電位の電位差は 13.1 V 以下にしなければなりません。

4.13 クロノポテンショメトリー (CP) パラメータ

クロノポテンショメトリーパラメータダイアログボックスを示します。:

2	OK
0	キャンセル
1	A11-7(H)
-1	
10	
10	
Cathodic 🖌	
0.1	
1	
○時間(@)	
	0 1 -1 10 10 Cathodic ↓ 0.1 1

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
負電流 (A)	$0 \sim 0.25$	負電流の制御
正電流 (A)	$0 \sim 0.25$	正電流の制御
高電位リミット (V)	-10 \sim +10	高電位リミット値
低電位リミット (V)	-10 \sim +10	低電位リミット値
陰極時間 (Sec)	$0.05 \sim 100,000$	陰極計測時間
陽極時間 (Sec)	$0.05 \sim 100,000$	陽極計測時間
初期極性	Cathodic または Anodic	最初のセグメントの極性
データ保存間隔 (Sec)	$0.0001 \sim 32$	データ保存間隔
セグメント数	1 ~ 1,000,000	半サイクル数
電流切替え極性	電位または時間	電流極性切替制御
補助電極信号記録	チェックまたは未チェック	サンプル間隔が 0.0005 秒以上の時、同時に外 部信号を記録する

- 負電流は還元、正電流は酸化に用います。還元の間、低電位リミットに到着した場合、電流極 性は自動的に正側に切り替ります。同様に酸化プロセスの間に高電位リミットに到達した場合、 電流極性は自動的に負側に切り替ります。電流極性切替えの数はセグメント数に依存します。 設定セグメント数に到着した場合、実験は停止します。
- 2. 初期電流極性は初期極性パラメータにより決められます。
- 3. 測定中のデータはデータ保存間隔と同じ速度で更新されます。
- 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、デー タ保存間隔も大きくなります。データが最大ポイントを超えますと、データ保存間隔は自動的 に2倍になります。故に、データポイントは期待しない長い計測を超えることはありません。
- 5. セグメント数を大きくすることは可能ですが、データは最初の 400 セグメントのみが保存され ます。測定中に広範のセグメントが表示されますが、保存はされません。
- 電流極性は特定の電位または指定時間の一方で切り替ります。陰極または陽極時間設定は異なります。他方、時間優先が選択されていても、リミット電位に到達した場合、電流極性は電極を守るために逆転します。

クロノポテンショメトリーによる充放電データ

4.131 電流ランプ - クロノポテンショメトリー (CPCR) パラメータ

電流ランプ ー クロノポテンショメトリー パラメータダイアログボックスを表示します。

刃期電流(!)(A)	3	ок
最終電流(E)(A)	0	キャンセル
電流スキャン速度 (A/s)	1e-010	~ 11-7(11)
高電位1月ット(H)(V)	1	
医電位1月ット(L)(V)	-1	
データ保存間蹑(D)(sec)	0.1	

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
初期電流 (A)	-0.01 \sim +0.01	初期電流
最終電流 (A)	-0.01 \sim +0.01	最終電流
スキャン速度 (A/Sec)	$1 imes10^{ ext{-10}}\sim0.01$	電流のスキャン速度
サンプル間隔 (Sec)	$0.0025 \sim 32$	サンプリング間隔
高電位リミット (V)	-10 ~ +10	高電位リミット値
低電位リミット (V)	$-10 \sim +10$	低電位リミット値
データ保存間隔	$0.0001 \sim 32$	データ保存間隔

- 1. 初期電流と最終電流は少なくとも1×10⁻⁹A離します。
- 負電流は還元、正電流は酸化に用います。還元の間、高電位リミットまたは低電位リミットに 到着した場合、測定は停止します。
- 3. 少なくとも 10 ポイントは測定を行う上で必要です。さもなければ、電流スキャン速度を減少さ せるか、サンプリング間隔を減らします。
- 4. 測定中、データはデータ保存間隔と同じ速度で更新されます。
- 5. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、デー タ保存間隔も大きくなります。データが最大ポイントを超えますと、データ保存間隔は自動的 に2倍になります。故に、データポイントは期待しない長い計測を超えることはありません。

4.13.2 マルチ電流ステップ (iSTEP) パラメータ

マルチ電流ステップパラメータダイアログボックスを示します。:

日第122397-221			
ステップ 1 ステップ 戦楽 (A) <u>日</u> ステップ時間 (A) 10	- ステップ 5 ステップ 電流 (A) 0 ステップ時間 (A) 0	ステップ D ステップ 愛流 (A) D ステップ 愛流 (A) D	0K 4+5/204
ステップ 2 ステップ 配定 (A) 0 ステップ 配定 (A) 0	ステップ 8 ステップ 電流 (A) 0 ステップ 電流 (A) 0	ステップ 10 ステップ 愛達 (A) 10 ステップ 愛達 (A) 10	
ステップ 3 ステップ 戦波 (A) 「0 ステップ時期 (G) 「0	ステッナ7 ステッナモル(A) (0 ステッナ時間(A) (0	ステップ 11 ステップ 電流 (A) 10 ステップ 電流 (A) 10	*****
ステップ 年 ステップ 電査 (A) 10 ステップ 時間 (a) 10	ステップ 巻通 440 10 ステップ 巻通 440 10 ステップ時間 63 10	ステップ 12 ステップ 電道(A) 10 ステップ 電道(A) 10	(周期122557105) (1) 振動力(5510) (4) (0 サイクル数 - 1 サンプル開発(6) - 1002

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
ステップ手順:1 - 12:		
ステップ電位 (A)	-0.25 \sim +0.25	ステップ電位
ステップ時間 (Sec)	$0 \sim 10,000$	ステップ期間 *
高電位リミット (V)	-10 \sim +10	高電位リミット値
低電位リミット (V)	-10 \sim +10	低電位リミット値
サイクル数	$1 \sim 10,000$	サイクル数
サンプル間隔 (Sec)	$0.0025 \sim 32$	サンプリング間隔

- 1. ステップ時間が 0.001 秒以下の場合、このステップは無視されます。
- 2. ステップ時間がサンプル間隔より短い場合、このステップは無視されます。
- 3. ステップ時間*(サイクル/サンプル間隔)が64Kを超える場合、または実験後、データ転送す る場合、サンプル間隔は自動的に増えます。
- 4. サンプル間隔が 0.002 秒以上の場合、データは転送され、リアルタイム表示されます。
- 5. 電位が高電位リミット、低電位リミットに達しますと、測定は停止します。

4.14 ポテンショメトリックストリッピング分析 (PSA) パラメータ

ポテンショメトリックストリッピング分析パラメータダイアログボックスを示します。:

所出電位(E)(V)	3	OK
所出時間(<u>T</u>)(sec)	15	キャンセル
長終電位(EXV)	0	A#7(H)
ストリッピング電流(<u>O</u>)(A)	0	
サンブル間隔(<u>a</u>)(sec)	0.01	
静止時間(Q)(sec)	0	

実験パラメータ、範囲、詳細は次の通り

パラメータ	範囲	内容
析出電位 (V)	-10 ~ +10	析出電位
析出時間 (Sec)	$0 \sim 100,000$	析出時間
最終電位 (V)	-10 ~ +10	最終電位注2参照
ストリッピング電流 (A)	-0.25 \sim +0.25	ストリッピング電流の制御
サンプル間隔 (Sec)	$0.0001 \sim 50$	サンプリング間隔
静止時間 (Sec)	$0 \sim 100,000$	データ採取前の静止時間

- 1. サンプル間隔が 0.002 秒以下の場合、64 K データポイントが許可されています。データ密度は 測定時間 /64,000 に等しくなります。
- 2. 最終電位に到着した場合、計測は自動的に停止します。
- 3. 制御ストリッピング電流をゼロに設定した場合、カウンター電極は実際には接続されません。
- 4. 制御ストリッピング電流が 1.0 × 10⁻¹⁰ A 以下の場合、計測中、電流は流れません。
- 5. 電流極性を心配する必要はありません。システムは自動的に析出電位と最終電位に応じて、電 流極性を割当てます。還元の場合、電流は正となり、酸化の場合、電流は負となります。
- 6. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、デー タ保存間隔も大きくなります。

4.15 電気化学ノイズ測定 (ECN) パラメータ

電気化学ノイズ測定 パラメータダイアログボックスを示します。

電気化学ノイズ測定(ECN)の場合、電位波形をセルには印加しません。作用電極はゼロ抵抗電流計です。 電位はバーチャルグラウンドを利用します(グラウンドに近いのですが、本当のグラウンドには接続し ていません)。電気化学ノイズを測定する場合、作用電極は機器のグラウンド(GND と記載されている 背面の黒のバナナジャック)に接続します。2つの電極を同じ溶液に浸漬します。2つの電極を流れる電 気化学ノイズ電流は測定されます。電位ノイズを測定する必要がある場合、参照電極は測定溶液内に入 れ、参照クリップで接続します。カウンター電極は使用しません。

サンブル間隔(<u>a</u>)(sec)	<u>))))</u>	OK
測定時間(<u>T</u>)(sec)	400	キャンセル
静止時間(<u>Q</u>)(sec)	2	ヘルプの
- ポテンシャル ゲイン	@100 C1000	
測定モード	er cet	

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
サンプル間隔 (Sec)	$0.1 \sim 10$	サンプリング間隔
測定時間 (Sec)	$10 \sim 100000$	測定時間
静止時間 (Sec)	$0 \sim 100000$	データサンプリング前の静止時間
感度 (A/V)	$10^{-12} \sim 0.1$	低電位リミット
電位ゲイン	1, 10, 100, 1000	ポテンシャルノイズ測定のゲイン設定
測定モード	I, E または両方	測定モード

ノイズ測定を行う場合、右図に示すセルの作用 電極 (WE), 参照電極 (RE) にリード線を接続して 下さい。

4.16 オーブンサーキットポテンシャル - 時間 (OCPT) パラメータ

オーブン回路ポテンシャル - 時間 パラメータダイアログボックスを表示します。

創定時間(T)(sec)	400	OK
サンプル間隔(<u>a</u>) (sec)	. 0.1	キャンセル
高電位E(H)(V)	1	~ U-7(H)

実験パラメータ、範囲、詳細は次の通り:

パラメータ	範囲	内容
測定時間 (Sec)	$0.1 \sim 500,000$	測定時間
サンプル間隔	$0.0025 \sim 50$	サンプリング間隔
高電位リミット (V)	-10 ~ 10	高電位リミット
定電位リミット (V)	-10 ~ 10	低電位リミット

- 1. 高または低電位リミットに到着した時、警告が表れます。
- 2. 一般的には、データ保存間隔は実験の長さに応じて選択されます。測定が長くなりますと、デー タ保存間隔も大きくなります。

OCPT により測定したデータ

4.17 システムコマンド

このコマンドを使用しますと、通信ポート、電流極性、電位軸、電流軸を設定できます。 システムセットアップダイアログボックスを示します。:

Communication Port		04
C Com <u>1</u> C Com <u>2</u> C Com <u>3</u> C Com <u>4</u>	Line Frequency 60 Hz 7 50 Hz	Cancel Help
C Com <u>5</u> C Com <u>6</u> C Com <u>7</u> C Com <u>8</u> C Com <u>9</u> C Com 1 <u>0</u>	Potential Axis Positive Left Positive <u>Right</u> Current Axis	
C Com 11 C Com 12	 Positive <u>Up</u> Positive <u>D</u>own 	
Com Port Speed	Current Polarity	Erase ADC Calibration Coefficients
 Standard Fast 	<u>C</u> athodic Positive <u>Anodic Positive</u>	Data Length: 128K 🗨
Windows		Present Data Override Warning
English	🔿 Oriental	Save Text File As Well

次のオプションはシステムのセットアップを行います。

通信ポート

PCと機器を接続するための通信ポート選択を行います。COM1はマウスで使用されている場合、 データリンクにはCOM2を接続して下さい。

電流極性

正電流としてカソード電流またはアノード電流を選択します。測定前にこれを設定しませんと、 実験結果(ピーク、波形)は報告されません。

ポテンシャル軸

正のポテンシャル軸を左または右に選択できます。これはボルタンメトリーまたはポーラログラフィーモードでは意味があります。

電流軸

上下のどちらかを正の電流軸に設定できます。

電源周波数

電源周波数を設定します。電源周波数の影響を受ける測定法の場合、電源周波数からの干渉を少 なくするために有効です。

ウインドウズ

英語のウインドウズを使用する場合、英語を選択して下さい。中国語、日本語、韓国語を使用す る場合、オリエンタルをチェックして下さい。オリエンタルウインドウは英語版に比べて文字が 大きくなります。英語ウインドウズを選択しますと、テクニック選択フィールドが切詰められる 事があります。オリエンタルウインドウズは英語のシステムフォントをサポートしておりません。 例えば英語のμ表示はuとして表示されます。

データ長

デフォルトのデータ長は 128 K です。データ長を長くしますと、コンピューターのリソースか消 費されます。必要ない場合、データ長は長くしないことをお勧めします。長いデータ長を使用し ますと、1 GB 以上 の大きな RAM を必要とします。また、システムは遅くなり、測定中に他のプ ログラムが動作しなくなる恐れがあります。

システムセットアップコマンドでデータ長を変更した場合、プロクラムを終了し、プログラムを 再スタートしてください。この操作を行いませんと、プログラムが壊れる恐れがあります。

長いデータ長でデータを取り込み、保存する場合、短いデータ長の設定で読込んだ場合、プログ ラムは壊れることがあります。一旦データ長の設定を行った場合、データ長の変更は行わないで 下さい。データ長の変更を行う場合、熟慮の上変更して下さい。

測定中のデータ修復

このオプションをチェックしておきますと、測定中のハードディスクに保存してあるデータを元 に戻します。実験が外部干渉または中断、通信エラーにより終了しない場合、部分的なデータは 回復できます。これはスキャン速度が遅い実験の場合、有効です。何時間も掛かる測定データを 修復できます。

このコマンドはデフォルトでは有効ではありません。遅いスキャン走査実験を行わない場合、または事故により実験が中断した場合、再度測定して下さい。

最後の測定データを修復したい場合、セットアップメニュー下のシステム コマンドの中の " 測定 中のデータ修復保存 " オプションをチェックして下さい。

現在のデータ無視の警告

新たな測定を行うまたはディスクに存在するファイルを開く前、実験データが保存されていない 場合、未保存のデータは無視されます。このオプションはデータが失われる前にシステムが警告 を発します。

テキストファイルで保存

通常バイナリーデータファイルで保存されます。バイナリファイルには多くの情報(実験のコント ロール情報)を含み、サイズも小さくなります。このオプションはバイナリーデータを保存する時、 テキストファイルとして保存します。テキストファイルは他のスプレッドシート、データベース 等の市販ソフトを用いて読むことができ有用です。

4.18 ハードウェアーテストコマンド

このコマンドを使用すると、システムハードウェアーをテストします。システムはROM、 RAM、アナログ回路試験を行います。テスト後、システムはハードウェアーセルフテストダイアログボッ クスを表示します。:

Digital circuitry test results: ROM version: 8.01 ROM revision date: 15-Sep-2008 Check Code: 1 1	<u> </u>
Potential offset test OK.	
Channel 1 offset test OK.	
Channel 2 offset test OK.	
Sensitivity test OK.	
Gain stages test OK.	
Galvanostat test OK.	
Analog circuitry test OK.	

デジタル回路試験結果:

装置のソフトウェアーバージョンを示します。

ROM テスト結果が示されます。

RAM テスト結果が示されます。

アナログ回路未キャリブレーション試験結果:

オフセット未キャリブレーション結果が示されます。測定中これらの結果は補償されています。故に、 ここに示されるオフセットは実験の測定エラーまたはコントロールに反映されません。

Eオフセットはポテンシャルオフセットです。

レンジ#オフセットは特定の電流測定範囲オフセットです。

これらのオフセットが10mV以上の場合、エラーメッセージ"Out of range"が表れます。測定中オフセットは補償されます。実際のデータに理由もなく大きなオフセットを使用しない限り、問題にはならないでしょう。

感度スケール

電流―電圧コンバータの感度スケールには9つの範囲があります。ダミーセル抵抗の固定値により、 試験は非常に低く、高範囲で相対的に大きくなるようでしょう。レンジ5、6 testの結果はエラーが あるレベルを超えた場合のみ報告されます。これは必ずしも実際の測定エラーに関係しません。この 試験は主にアンプと感度スイッチングをチェックします。測定エラーに関係する場合、正確な抵抗で サイクリックボルタンメトリーを行いチェックしてください。

ゲイン

シグナルゲイン設定には3レンジあります。エラーが1%を超えると、警告メッセージが表れます。

ガルバノスタットテスト

ガルバノスタット / ポテンショスタットの切替えが試験されます。ガルバノスタットの電流制御もまた試験されます。何か問題が検出されますと、エラーメッセージが表れます。

アナログ試験概要

アナログ回路の試験結果は要約されます。アナログ回路試験のメッセージが OK ならば、エラーは検 出されません。さもなければ、エラーメッセージが表れます。アナログ / デジタルコンバーターによ るエラーが表れる場合、その結果も報告されます。

アナログ試験エラーがあると、何回かテストを繰返し、エラー内容が同一であるかどうか確認して下 さい。エラー内容を記録し、販売代理店にご連絡下さい。

5.1 測定コマンド

このコマンドにより計測を行います

このコマンドは静止時間、析出時間、前処理を省略する場合も使用されます。このコマンドを使用し、静止時間、析出時間、前処理時間中に次のステップに行くことが出来ます。

測定前、システムはデータリンクをチェックします。リンクに失敗すとコマンドは終了し、 エラーメッセージが表れます。

ソフトは実験パラメータの組み合せをチェックします。組み合せが適切でない場合、コマン ドは終了し、エラーメッセージが表れます。

ほとんどの場合、リアルタイム表示が可能です。しかし、データ取込み速度がデータ転送速 度より早い場合、データは計測後、直に表示されます。測定停止コマンドを押して測定を中止 できます。測定中のグラフィックをクリップボードにコピーできます。

このコマンドはツールバーボタンがあります:

5.2 待機 / 再開コマンド

測定の一時中止、再開を行うためのコマンドです。

このコマンドはタイムベースの計測、例えば CA, CC, BE, i-t, DPA, DDPA, TPA, IMP, IMP-t, CP, PSA 等には使用できません。

このコマンドはツールバーボタンがあります:

5.3 測定停止コマンド

測定を停止するために使用するコマンドです。 測定中、繰返し測定、マクロコマンドを停止するために使用できます。

このコマンドはツールバーボタンがあります:

5.4 スキャン反転コマンド

サイクリックボルタンメトリー実験中にポテンシャルのスキャンを反転するためのコ マンドです。

このコマンドを押しますと、毎回スィープセグメントは反転します。

このコマンドを測定中に使用しますと、データ解析の幾つか、例えばピーク検索等は働きません。

このコマンドは他のテクニックでは機能しません。

このコマンドはツールバーボタンがあります:

5.5 測定状況コマンド

このコマンドは計測に関連する設定、例えば iR 補償、スムージング、パージ、攪拌、水銀の前滴下、各計測後自動スムージングを有効、無効を変更、をチェックするために使用します。 下記図は測定状況コマンドのダイアログボックスです:

「創業者にキャリアレーシー		OK
「山王市に整理のチェック氏」		キャンセル
自然電気を切開電気として使用		~# 7 0
〒 初2間の現料(2) マ 近2間のパージ(2) マ 辺2間のパージ(2) マ 辺2間の現料(3)	19 2 и лам са тф). П	B&B)
- しへいして)記念中止 「F No 「C Current Duerflow	- 存止時間の中止 (そ No (* Dument (A): (* Dument (A):)	E2 on/offControl () Apploads) E2 (V) 0 E2 Con E2 Con E3 Co
		200000000

このオプションは計測に関連する状況を変更するオプションです。:

測定前のキャリブレーション

このボックスをチェックしますと、ポテンシャル電流オフセットは測定、補償されます。このオプションを使用不可にしますと、各測定前の時間遅延が減少します。

測定前の接続チェック

このボックスをチェックしますと、カウンター、参照電極の接続がチェックされます。電極 の一つが接続されていないと、警告メッセージが表れます。このことはポテンショスタットの オープンループによる作用電極の損傷を防ぎます。警告が表れたら、接続のチェックを行って 下さい。このオプションを使用不可にしますと、実際の計測前の時間遅延が減少します。

オープンサーキットに初期電位を使用

このボックスをチェックしますと、システムは測定前にオープンサーキットポテンシャルを テストし、オープンサーキットポテンシャルを初期電位として使用します。

外部トリガー測定

このボックスがチェックされますと、機器の背面パネルのセルコントロールポートの外部トリガー信号によりスタートします。ピン配列については付録を参照して下さい。

次の測定のための iR 補償

このボックスをチェックしますと、次の測定の iR 補償が使用可になります。自動補償が設定され、iR 補償試験が行われない、または感度スケールが変更された場合、iR 補償は使用できません。TAFEL, BE, IMP, CP, PSA のようなテクニックでは iR 補償はできません。コントロールメニューの iR 補償から ON、OFF します。

測定後のスムージング

このボックスをチェックしますと、測定後自動スムージングが使用可能です。TAFEL, BE, IMP のようなテクニックはスムージングができません。このオプションはデータ処理メニュー のスムージングコマンドから ON、OFF できます。

2種類のデジタルスムージングが利用できます。:最小二乗方、フーリェ変換スムージングで す。スムージングのモードを設定する場合、データ処理メニューのスムージングコマンドを使 用します。

測定の間のパージ

この項目をチェックしますと測定の間のパージが行えます。この項目はコントロールメ ニューのパージコマンドから ON、OFF できます。

測定の間の攪拌

この項目をチェックしますと、測定の間の攪拌が行えます。この項目はコントロールメニューの攪拌コマンドから ON、OFF できます。

析出中の回転

この項目をチェックすると、ストリッピング分析での析出中回転します。この項目はコント ロールメニューの回転ディスク電極コマンドから ON、OFF できます。

静止時間中の回転

この項目をチェックしますと、静止時間中回転します。この項目はコントロールメニューの 回転ディスク電極コマンドから ON、OFF できます。

測定中の回転

この項目をチェックしますと、測定中回転します。この項目はコントロールメニューの回転 ディスク電極コマンドから ON、OFF できます。

測定の間の回転

この項目をチェックしますと、測定の間に回転します。この項目はコントロールメニューの 回転ディスク電極コマンドから ON、OFF できます。

回転速度 (rpm)

このパラメータは回転ディスク電極の速度を設定します。パラメータ範囲は0~10,000です。 測定前の SMDE 滴下

パラメータのデフォルト値は1です。通常システムは静止水銀滴下電極 (SMDE) が使用される時、測定前に新しい滴を形成するために滴下 / ノックを組み合せます。このデフォルト条件を変更できます。パラメータ範囲は0~20です。前滴下は0に設定されている場合、次の測定には前の測定に使用された滴下条件が使用されます。SMDE の場合、キャピラリーに気泡が付着し、接触不良が起ることがあるで、前滴下は1滴以上が有効です。

このオプションはコントロールメニューのセルコマンドで変更できます。

レベルでの測定中断

電流または電荷が特定の値に達しますと、実験は自動的に停止します。電極は過電流から保 護されます。これを選択しないと、測定は最後まで行われます。

静止時間中の電流表示

静止時間中の電流を数値またはグラフにて表示します。感度スケールは電流を読込むために 自動的に切替わります。これを選択していませんと、電流は表示されず、感度は実験に使用し た値と同じになります。

静止時間中断

電流または電荷が特定の値に達しますと、データサンプリングが自動的に停止する前に 静止時間を中断します。これを選択しませんと、測定は最後まで行われます。

5.6 静止時間 - 電流値制御機能の操作

静止時間中の電流表示

数値またはグラフ表示にて静止時間の間の電流を表示します。感度スケールは電流を最適に読 込むために自動的に切替られます。NOを選択しますと、電流は表示されず、感度は測定中同 じです。

この機能は静止時間中に任意の電流値に達した時に測定が開始される機能です。

操作手順

コントロールメニューの測定状況を開きます。

画面中央下の「静止時間中の電流表示」を「グラフ」にします。

画面右下「静止時間中止」の設定

「No」:変数設定のところで指定した静止時間が終了すると測定が開始されます。

「電流>」:入力 Box で指定した電流値を超えると測定が開始されます。

「電流<」:入力 Box で指定した電流値以下になると測定が開始されます。

OKをクリックします。この機能に関します設定は以上です。

測定変数での静止時間との優先順位について

測定変数で決定される静止時間と本機能によって制限される時間とではより短い方が優 先されます。本機能を使用する場合は測定変数での静止時間を長めに入力するようにしてく ださい。

5.7 繰返し測定コマンド

一連の計測を行うためのコマンドです。

繰返し測定の間、システムはデータリンクをチェックします。リンクが失敗すると、コマン ドは終了し、エラーメッセージが表れます。

ソフトは実験パラメータの組み合せをチェックします。組み合せが適切でない場合、コマンドは終了し、エラーメッセージが表れます。

下記図は繰り返し測定コマンドのダイアログボックスです:

劓定数(№)		OK
ベー スファイル名(B)		キャンセル
側定間の時間間隔(T)(sec)…	0	<u> へルプ 他</u>)
- 各測定前にプロンプット		2 .
● なし ○ マニュアル	レ 🧿 外部トリガー	

次のオプションは繰返し測定のパラメータを定義します。:

測定数

測定数を入力する。パラメータ範囲:1~999.

ベースファイル名

ベースファイル名を入力します。最大5文字まで入力できます。測定後、データは保存され ます。測定数はベースファイル名に添付されます。例えば、ファイル名N、Nは1~999測定 数です。ベースファイル名が指定されていない場合、警告が表れます。システムはデータを保 存せずに測定します。

測定間隔

このパラメータは連続した測定間の遅延時間です。パラメータ範囲は0~32,767です。各測 定が利用できる前にプロンプットする場合、このパラメータは有効ではありません。

各測定前のプロンプット

マニュアルがチェックされると、プロンプットは各測定(一回目の測定を除く)前に表れます。 システムは応答するまで待機します。

外部トリガーが選択されますと、機器は外部信号の待機状態になります。外部トリガーが active low で、機器の背面パネルのピン 13 に接続します。

マニュアルまたは外部トリガーが選択されますと、測定間の時間間隔には効果がありません。. 実行時のデータ平均

この項目がチェックされますと、繰返し測定のデータは平均化され、ファイル名0として保 存されます。

5.8 繰返し測定の機能

繰返し測定を行う場合のデータを一連のテキスト データとして表示して欲しいとの要望により、ソフト ウェアーの変更を行ないました

ソフトウェアーを立ち上げコントロールファイルを マウスでクリックしますと、下記のメニューが表示さ れます。

Annual matrice	Contract of the local division of the local	startal and street calls	
CRIED IN	100 Dat 10 10 10/25		
	Sec.48		
	made .		
	TRICES.		
	And then		
	Deer, name		
	and the second sec		
	APAC/R-44		

この時、繰返し測定を選択しますと、下記のダイアログが開きます。

測定数、測定の時間間隔、外部トリガー、マニュア ルにて測定を行うかを選択します。結果レポートファ イルとしてピーク波形、データ形式を選択します。そ して、データの保存場所を設定します。

データ形式の選択にはオリジナルデータ、半微分、 微分データの選択が行なえます。通常オリジナルを選 択して下さい。定量性を向上させるためには微分、半 微分処理を行ないますと正確なピーク電位が検索でき ます。

REPO:	1000		DR:
KERKARBER	(aut)-	2	**1/28
\$800ME2450	rst-		A.678
18.81 C.4	237A C 41	新小校 一	18.85.82
	4910		
福岡レポートファイ1	<u></u>		
17 AU			
12-0188	Subst 1		
¥-38/#	2101	6	
	Difficient	19 Miles	

結果レポートファイルを作成する場合、有効をマウ スでクリックして下さい。

ピーク波形の選択としては、デフォルト、ガウス波 形、拡散波形、シグモイド波形の選択が行なえます。 CV, LSV の場合 Diffuse, または DPV,SWV, ACV, LSSV の場合、ガウス波形、微小電極を用いた CV, NPV の 場合等はシグモイド波形を選択します。

データの保存場所を設定するために、ブラウズボタ ンをクリックし、データを保存するディレトリーを指 定します。

下記のようなデータが得られます。

ディレクトリー	日付	時刻	電位	電流	面積	電位	電流	面積
C:\My Documents\wu\wc0.bin	June 12, 2002	11:24:00	Ep = 0.284V	ip = -5.684e-007A	Ah = -4.938e-007C	Ep = 0.137V	ip = 1.009e-006A	Ah = 9.807e-007C
C:\My Documents\wu\wc1.bin	June 12, 2002	11:24:24	Ep = 0.284V	ip = -6.233e-007A	Ah = -5.158e-007C	Ep = 0.135V	ip = 9.909e-007A	Ah = 9.919e-007C
C:\My Documents\wu\wc2.bin	June 12, 2002	11:24:48	Ep = 0.290V	ip = -6.153e-007A	Ah = -5.615e-007C	Ep = 0.129V	ip = 9.823e-007A	Ah = 1.051e-006C
C:\My Documents\wu\wc3.bin	June 12, 2002	11:25:11	Ep = 0.290V	ip = -6.185e-007A	Ah = -5.633e-007C	Ep = 0.132V	ip = 9.986e-007A	Ah = 1.040e-006C
C:\My Documents\wu\wc4.bin	June 12, 2002	11:25:35	Ep = 0.287V	ip = -6.399e-007A	Ah = -5.587e-007C	Ep = 0.129V	ip = 9.810e-007A	Ah = 1.048e-006C
C:\My Documents\wu\wc5.bin	June 12, 2002	11:25:59	Ep = 0.292V	ip = -6.119e-007A	Ah = -5.677e-007C	Ep = 0.129V	ip = 9.822e-007A	Ah = 1.055e-006C

注意点

マニュアルを選択し、ブラウズにて保存するディレク トリーを指定します。そして、6回の測定を行なうよ うスタートしますと、繰返し測定は1回のみ行ないま す。

マニュアルを選択し、ブラウズにて保存するディレク トリーを指定しない場合、6回の測定を行なうようス タートします。繰返し測定は6回測定を行いますが、 最後のデータのみ保存します。

外部トリガーを選択し、ブラウズにて保存するディレ クトリーを指定します。そして、6回の測定を行なう ようスタートしますと、繰返し測定は1回のみ行ない ます。

外部トリガーを選択し、ブラウズにて保存するディレ クトリーを指定しない場合、6回の測定を行なうよう スタートします。繰返し測定は6回測定を行いますが、 最後のデータのみ保存します。

II 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	DK
EXCHANGED BACK	13	キャンセル
各別定前にプロンプ・オーーー		~11-70-0
C &L (72376)	○州御小川廿一	経営し制定
始期しポートファイル		
MM 105-F3F4.0		
F-SER Onerval		

NIX	DK
NENOMINAS() (sca)_ 3	キャンセル
- 各規定前にプロング・オーーーー	~11/7010
「なし (「マニュアル (年井御)1日-	HIGUNE
▼ #rtH0 F-90+0±@	
始用しポートファイル	
17 an	
ビーク細胞 DeAut +	
Frankling Databal	

5.9 マルチプレクサーコマンド

マルチプレクサーを用いて一連の計測を行うためのコマンドです。必要なハードウェアーは モデル 684 マルチプレクサーです。モデル 684 の最低チャンネルは 8 です。チャンネル数は 8 の倍数、x16, 24, x32・・・となり、最大 64 チャンネルまで用意しています。

マルチプレクサーの1電極当たりのケーブルは4本(作用、センス、参照、カウンター電極) から構成されています。最大 64 セルまで接続でき、自動計測が行えます。

下記図は繰り返し測定コマンドのダイアログボックスです:

	+	F	2	F	a:	175	a.	E	6	m	6	T.	2	E	8		L	
1		P	10	2	11	100	19	F	13	1	14	宇	15	-	1.5		++01	e.u
	17	F	18	F	19	P	20	E	21	F	ZE	F	23	F	24		ヘルフ	Ð
-	25	F	25	F	27	F	28	F	28	F	20	П	21	Г	22		素行	ŧ
Ē	99	Г	34	Г	15	Г	36	Г	97	Г	38	Г	38	Г	40			
	41	r	42	Г	43	-	44	Г	45	Г	48	Г	47	Г	48			
Г	40	Г	50	Г	81		52	Г	63	Г	64	Г	85	Г	5.5			
Γ	57	Г	98	Г	19	Г	60	Γ	61	Г	62	Г	63	Г	64			
61	92	*	76	175	**											[³ *	*****	
		10	9 D#	31	1		-	2.0	C.C.	्रा	20	202	8			792	ware the	

次のオプションは繰返し測定のパラメータを定義します。:

チャンネルの選択

必要なチャンネルをクリックします。クリックされていないチャンネルは働きません。モデル 684 のチャンネル数を超える場合、入力パラメータは無視されます。

各測定前にプロンプット

マニュアルがチェックされると、プロンプットは各測定(一回目の測定を除く)前に表れます。 システムは応答するまで待機します。

外部トリガーが選択されますと、機器は外部信号の待機状態になります。外部トリガーが active low で、機器の背面パネルのピン 13 に接続します。

ベースファイル名

ベースファイル名を入力します。最大5文字まで入力できます。測定後、データは保存され ます。測定数はベースファイル名に添付されます。例えば、ファイル名N、Nは1~99999測 定数です。ベースファイル名が指定されていない場合、警告が表れます。システムはデータを 保存せずに測定します。

チャンネル設定

任意のチャンネルを設定できます。ダイアログボックスを終了し、特定のチャンネルの測定 を実行して下さい。

実行

このボタンを押しますと、選択したチャンネルの測定を開始します。ベースファイル名を決めておけば、ファイルは自動的にベースファイル名 + チャンネル .bin として保存されます。例 えば、ベースファイル名を TEST とし、モデル 684 のチャンネルを 3、8、23、58 を選択し、測 定を行います。保存ファイルは TEST3,bin, TEST8.bin, TEST23.bin, TEST58.bin として保存され います。ベースファイル名と同じ名前が存在する場合、書込み禁止が表示されます。測定し条 件はコマンド実行前に設定して下さい。

マルチプレクサー関連マクロコマンド

マルチプレクサーには2つのマクロコマンドがあります。

1つは "mch:##" 各チャンネルを設定できます。

他のマクロコマンドは "mchn" は For......Next loop で使用されます。For.....Next loop を使用 することにより、" mchn" で特定のチャンネルをスキップして測定します。

モデル 684 を用いた測定
5.10 マクロコマンド

指定した順序で一連のコマンドを実行するコマンドです。測定を自動的に行う場合、大変有効です。 下記図はマクロコマンドのダイアログボックスです:

次のオプションはマクロコマンドを編集、読込み、保存、実行できます:

読込み

以前マクロコマンドでディスクに保存したファイルを読み込むことができます。 システムで開くダイアログボックスを表示し、ファイルを選択します。

保存

マクロコマンドで編集したディスクファイルを読み込むことができます。後で元に戻せ ます。

システムは名前を付けて保存ダイアログボックスを表示し、ファイルに名前を付けるこ とができます。

マクロ実行

このボタンを押すと、マクロコマンドを実行します。実行する前に、システムはコマンドとパラメータの有効性をチェックします。エラーが検出された場合、システムはマクロコマンドを終了し、警告メッセージが発せられます。

マクロコマンド編集

編集ボックスのコマンドを入力します。各コマンドは1行とします。このコマンドが有 効でない場合、スペースは無視されます。コマンドの次にパラメータが必要とする場合、コマ ンドとパラメータを分離するためにコロン ":" または等号 "=" はコンマとパラメータを分けるた めに使用されます。

コマンド機能の説明:

コマンド	パラメータ	説明
tech	string	電気化学テクニックの選択
run		測定開始
save	string	データをディスクファイルに保存; Nextloopの場合、ファイ
		ル名は5文字の入力のみとなります。ループ番号(1-999)がファ
		イル名に付加されます。

for	1 - 999	next ループの場合、1層のみ許可されます。
next		fornext ループの場合
delay	1 - 32,000	コマンド間の遅れ
purge	1 - 32,000	任意の時間のパージ
stir	1 - 32,000	任意の時間の攪拌
cellon		測定の間 cell on
celloff		測定の間 cell off
rdeon		RDE オン
rdeoff		RDEオフ
mch	$1 \sim 64$	マルチプレクサーのチャンネルの選択
machn		Nextloop を使用した場合のマルチプレクサーのチャンネ ルの選択
ei	-10 \sim +10	初期電位
eh	-10 \sim +10	CV, CA, CP の高電位リミット
el	-10 \sim +10	CV, CA, CP の低電位リミット
ef	-10 \sim +10	スィープテクニックと PSA の最終電位
eio		オープンサーキットポテンシャルを初期電位と使用します。
		初期電位が入力されますと、このフラグはオフになります。
e2	-10 \sim +10	第二電極の電位
e2on		第二電極オン
e2off		第二電極オフ
V	$1e-6 \sim 2e4$	スキャン速度
incre	$.01 \sim .05$	電位増加分
pn		CV, CA での初期電位方向切り替え; CP での初期電流極性
cl	$1 \sim 10,000$	CV、CP のセグメント数
si	$.001 \sim .064$	BE, CP のサンプル間隔またはデータ保存間隔
sens	1e-12 \sim .1	感度
sens2	1e-12 \sim .1	第二電極の感度
autosens		遅い CV または LSV の自動感度
qt	$0 \sim 100,000$	測定前の静止時間
ht	$0 \sim 100,000$	TAFEL の最終電位保持時間
pw	$1e-4 \sim 1e3$	パルス幅
amp	$.001 \sim .5$	交流またはパルス振幅
SW	$1e-4 \sim 50$	サンプリング幅
st	$.001 \sim 5e5$	i-t 曲線のトータルサンプル時間
prod	$.01 \sim 50$	サンプリング期間
freq	$1 \sim 100,000$	周波数
iratio	$0 \sim 100$	BEの最終電流比
bepe	-10 ~ +10	BEの前電解電位
bept	0 ~ 100,000	BEの前電解時間
rpm	$0 \sim 10,000$	RDE 回転速度
i	$0 \sim 0.25$	PSAの制御電流
ic	$0 \sim 0.25$	CP の陰 (カソード) 電流
ia	$0 \sim 0.25$	CP の陽 (アノード) 電流
tc	$0.05 \sim 100,000$	CP の陰(カソード)時間
ta	$0.05 \sim 100,000$	CP の陽 (アノード)時間
priot		CPでの時間優先
prioe		CPでの電位優先
fl	$.0001 \sim 10,000$	IMPの低周波数
fh	$.001 \sim 100,000$	IMPの高周波数

5章.コントロールメニュー

mt	1 - 1,024	10Hz 以上の時の IMP の測定時間
cl1	1 - 4,096	IMP の周波数が 1 ~ 10 Hz の時、測定サイクル
cl2	$1 \sim 4,096$	IMP の周波数が 0.1 ~ 1 Hz の時、測定サイクル
cl3	$1 \sim 256$	IMP の周波数が 0.01 ~ 1Hz の時、測定サイクル
cl4	$1 \sim 256$	IMP の周波数が 0.001 ~ 0.01 の時、測定サイクル
cl5	$1 \sim 16$	IMP の周波数が 0.0001 ~ 0.001 の時、測定サイクル
depeon		ストリッピングモードでの析出電位をオン
depeoff		ストリッピングモードでの析出電位をオフ
depe	-10 \sim +10	析出電位
dept	$1 \sim 100,000$	析出時間
pcon		前処理をオン
pcoff		前処理をオフ
pce1	-10 \sim +10	前処理の第一ステージの電位
pce2	-10 \sim +10	前処理の第二ステージの電位
pce3	-10 \sim +10	前処理の第三ステージの電位
pct1	$0 \sim 6,400$	前処理の第一ステージの時間
pct2	$0 \sim 6,400$	前処理の第二ステージの時間
pct3	$0 \sim 6,400$	前処理の第三ステージの時間
ei1	-10 ~ +10	SSF での初期電位 1
ei2	-10 \sim +10	SSF での初期電位 2
ei3	-10 \sim +10	SSF での初期電位 3
ei4	-10 \sim +10	SSF での初期電位 4
ei5	-10 \sim +10	SSF での初期電位 5
ei6	-10 \sim +10	SSF での初期電位 6
ef1	-10 \sim +10	SSF での最終電位 1
ef2	-10 \sim +10	SSF での最終電位 2
ef3	-10 \sim +10	SSF での最終電位 3
ef4	-10 \sim +10	SSF での最終電位 4
ef5	-10 \sim +10	SSF での最終電位 5
ef6	-10 ~ +10	SSF での最終電位 6
v1	1e-4 \sim 10	SSF でのスキャン速度 1
v2	1e-4 \sim 10	SSF でのスキャン速度 2
v3	1e-4 \sim 10	SSF でのスキャン速度 3
v4	1e-4 \sim 10	SSF でのスキャン速度 4
v5	1e-4 \sim 10	SSF でのスキャン速度 5
v6	1e-4 \sim 10	SSF でのスキャン速度 6
es1	-10 ~ +10	SSFと STEP でのステップ電位 1
es2	-10 ~ +10	SSFと STEP でのステップ電位 2
es3	-10 ~ +10	SSFと STEP でのステップ電位 3
es4	-10 ~ +10	SSFと STEP でのステップ電位 4
es5	-10 ~ +10	SSFと STEP でのステップ電位 5
es6	-10 ~ +10	SSFと STEP でのステップ電位 6
st1	0 ~ 10,000	STEP でのステップ時間 1
st2	0 ~ 10,000	STEP でのステップ時間 2
st3	0 ~ 10,000	STEP でのステップ時間 3
st4	0 ~ 10,000	STEP でのステップ時間 4
st5	0 ~ 10,000	STEP でのステップ時間 5
st6	$0 \sim 10.000$	STEP でのステップ時間 6

マイクロコマンドの一例

i-t テクニックを用いた測定法 LSV テクニックによる測定 EQCM テクニックによる測定

1 電極による i-t 測定法	2 電極による i-t 測定法	tech:lsv	cellon
1 電極による i-t 測定法 tech: i-t st=30 cellon ei = 0 run save: file0 for: 7 ei=-0.2 run save: file1a ei=0 run save: file1b next	2 電極による i-t 測定法 tech:i-t eiincr = 0 ei=-0.5 st = 2 qt=0 e2 = 0 e2on cellon for:10 run save: file eiincr=0.1 next celloff eiincr = 0	tech: $1 = -0.2$ ef = 0.8 v = 0.1 sens = 1e-5 run save: 1sv100 v = 0.2 run save: 1sv200 v = 0.5 run save: 1sv500 v = 1 run save: 1sv1000	cellon qcmon tech: cv sens=5e-5 ei=0.1 eh=1 el=0.1 v=0.5 si=0.001 cl=20 run tech:ca qcmon ei=0.1 eh=0.111 el=0.1 cl=1 pw=1000 si=0.1 qt=0 sens=5e-5
			run

save:test

マクロコマンドの詳細についてはコマンドの機能説明を参照して下さい。

5.11 オープンサーキットポテンシャルコマンド

このコマンドを使用すると開回路ポテンシャルを測定します。

オープンサーキットポテンシャルはセルに電流が流れない作用電極と参照電極の電位です。 これは重要なパラメータです。測定を開始する前の初期状態を知らせます。研究中の化合物が 酸化または還元性であるかを見分けることができます。

測定後、システムはオープンサーキットポテンシャルダイアログボックスによりオープン サーキットポテンシャルを表示します。その値を読み込んだ後、OK をクリックするとダイア ログボックスを閉じます。

Open Circuit Potential Measurement	×
Open Circuit Potential (V)	(OK)

5.12 iR 補償コマンド

このコマンドを使用すると溶液抵抗とセル時間定数、同様に自動またはマニュアルに よる iR 補償の使用または使用しない設定を行います。

システムは iR 補償ダイアログボックスを表示し、iR 補償条件を設定できます。

iR補償テスト結果	ОК
抵抗 (ohm)	キャンセル
RC定数 (usec)	~ II 700
補償レベル 060	~~~~~
未補償抵抗 (ohm)	
(2	▽ 次の測定のiR補償()
iR補償テスト	
7 7.h@)(V)	● 一回(0) ○ 常時(※)
ステップ振幅(<u>S</u>)(V) 0.05	- 沢浦賀モード
補償レベル(止)(%)	○ 自動(A) ○ マニュアル(M)
オーバーシュート(2006) 2	
	「マニュアル補償」
テスト(T)	抵抗(R)(obm) 0

次のオプションは iR 補償パラメータ設定できます。

iR 補償試験結果

iR テストボタンをクリックすると、システムは溶液抵抗とセル時間定数試験を行います。結果はここで報告されます。

システムは必要な補償レベルに到着するまで徐々に補償レベルを上げるか、またはシステム を不安定になるまで安定性をテストします。実際の許容補償レベルと未補償抵抗が表示されま す。未補償抵抗は算出された抵抗と許容補償レベルから算出されます。

最大許容抵抗補償はi/Eコンバーターのフィードバック抵抗に制限されることに注意してください。

iR 補償試験

iR 補償試験を開始する前に、テストパラメータをチェックします。

テスト電位は電気化学反応が起こらないテストポテンシャルです。システムが試験を行う時、テストポテンシャルの周りにポテンシャルステップを印加します。試験結果は電気化学セルが一連の二重層キャパシターの溶液抵抗と同一ならば良好です。テスト電位の範囲は -10 V ~ +10 V です。

ポテンシャルステップ振幅を調整します。振幅を大きくすると、S/N 比は良くなります。しかし、振幅を大きくしすぎるとファラディー電流が流れます。 0.05 V ステップ振幅が推奨されます。ステップ振幅の範囲は 0.01 ~ 0.25 V です。

補償レベルは溶液抵抗を測定に基づいて補償したい抵抗の割合です。パラメータの範囲は0 ~ 200%です。デフォルト値は100%です。

オーバーシュートレベルは安定性試験の基準です。ポジティブフィードバック量を増加しま すと、システムは不安定になります。ポテンショスタットが共振開始する前に、ポテンシャル に応答する電流のオーバーシュートが表れます。許容のオーバーシュートより高く、可能な補 償レベルも高くなりますが、システムの安定性は悪化します。パラメータの範囲は0~100% です。デフォルトレベルは2%です。

iR テストボタンをクリックすると、システムは溶液抵抗と安定性を試験します。結果は iR 補償試験結果ボックスに報告されます。

iR 補償の詳細については下記の文献を参照して下さい。Intelligent, Automatic Compensation of Solution Resistance. P. He, and L. R. Faulkner, <u>Anal. Chem.</u>, 58, 517-523 (1986).

次の測定の iR 補償

このボックスがチェックされますと、次の測定の iR 補償は使用可能です。自動補償が設定 され、iR 補償試験が行われないか、または感度スケールが変更されているならば、iR 補償は使 用できません。このオプションはコントロールメニューの測定条件コマンドから ON、OFF で きます。

iR 補償使用可

オプション"一回"が選択された場合、iR 補償は次の測定にのみ適応され、次に使用不可に なります。連続測定に適応される同じ補償条件が必要ならば、"常時"オプションを選択します。 オプションを選択するために最適なラジオボタンをクリックします。

iR 補償モード

自動 iR 補償またはマニュアル iR 補償を選択できます。自動 iR 補償は iR 補償試験結果に基 づいています。補償したい抵抗を入力することによりマニュアル iR 補償を選択できます。オプ ションを選択するために最適なラジオボタンをクリックします。

マニュアル補償抵抗

マニュアル iR 補償を選択する場合、システムに補償させる抵抗値を入力します。補償レベルに注意して下さい。補償レベルが実際の溶液抵抗に近寄るか、または超えている場合、ポテンショスタットは共振します。最大許容抵抗補償は i/E コンバーターのフィードバック抵抗に制限されます。

このパラメータは自動 iR 補償が選択された場合、有効ではありません。

このコマンドはツールバーボタンがあります:

5.13 iR 補償

ポテンショメトリックな実験では、作用電極と比較電極の界面領域を横切る電位降下の合計 はこれら2電極間の印加電位と同じと仮定しています。溶液抵抗による2電極間のiR 降下があ るからです。この抵抗は支持電解質を添加することにより下げられますが、多くの場合、考慮 する必要はありません。このような場合、電気的に補償できます。

1. 未補償抵抗の測定

2. 補償と回路安定性試験

未補償抵抗の測定

この測定では、電気化学セルは電子工学的に RC 回路と等価と考えます。即ち未補償抵抗 Ru は、二重層容量 Cdl と直列です(図 5-1)。ファラディーインピーダンスをこのモデルでは考え に入れないので、テストポテンシャル(テスト E)はファラディー過程が起こらない値にしな ければなりません。ポテンシャルステップ(ΔE)は、このポテンシャル付近で印加します(即 ち、テスト E-25 mV からテスト E+25 mV)。

電流はステップが印加された後、54 μ s と 72 μ s においてサンプリングします。 電流は指数 関数的に減衰するので(図 5-2 参照)、初期電流 l₀ はゼロ時間に外挿することにより算出されます。 $\Delta E = l_0 R_u$ なので, R_u はこの測定から算出されます。

表 5-1 は指数関数の外挿によるいくつかのダミーセルの抵抗測定の結果を示します。時定数 が 200 µ s より大きい場合、非常に良く一致します。しかし、時定数が 100 µ s 以下では、誤 差は大きくなります。従って、自動 iR 補償は、未補償抵抗が低いか、時定数が小さいときには 有効に働きません。この誤差は理論通りにいかない電流応答の急激な立ち上がりによるとみら れます。 表 5-1. 指数関数の外挿による測定抵抗と時定数"

Ru/ Ω	測定 RC 時定数 / μ s ^b	測定 \mathbf{Ru}/Ω	Ru 測定の誤差(%)
50.3	38	29	-42
100.4	94	92	-8.4
150	146	145	-3.3
200	198	198	-1.0
250	250	249	-0.4
300	302	301	+0.3
347	350	349	+0.6
401	406	404	+0.7
452	360	449	-0.7

a: P. He, L.R. Faulkner, Anal. Chem. 58 (1986) 523 b: 10 µ F の容量を使用

補償と回路安定性試験

補償はポテンショスタットのポジティブフィードバックによって行なわれます。しかし、補 償が100% よりかなり小さくても回路が不安定になるという問題が起こることがあります。そ れゆえに、ポジティブフィードバックは算出した未補償抵抗の一定割合を段階的に付加してい きます。

即ち、80%まで5%づつ、80%から90%まで2%づつ、その後1%づつ増加します。

回路の安定性は増加後ごとにテストします。補償の程度はユーザーが定義できます(デフォル ト値=100%とする)。

安定性試験では、テスト Eを挟んで 50 mV ステップが印加されます。 ベースラインはポテン シャルステップを印加する直前のデータを集めることによって測定されます。そして、このベー スライン値をステップデータから減算し、正味電流値とします。

補償量を増やすに従い、最初の電流応答は指数関数的減衰後、リンギング効果を示し(図 5-3 参照)、振動します。前振動リンギングの程度はオーバーシュートとして定義する量で数量 化します。オーバーシュートは極小(ネッ

トネガティブ) 電流値(I 最小) と極大電 流値(I 最大) との比率で定義し、パーセ ントで表示します。即ち、オーバーシュー ト=(I 最小/I 最大) x 100 です。最大許容 オーバーシュート値はユーザーが定義でき ます(デフォルト値=10%です)。

もし測定オーバーシュート値が最大許容 値以下ならば、補償は続けられます。もし 許容値より大きく、補償の希望するレベル にまだ達していないなら、回路を安定させ るために比較電極とカウンター電極の間に コンデンサーを挿入します。そして補償が 必要なレベルに達するか、オーバーシュー ト値が越えられるまで(もしこれが起こる ならば、実験で使う補償量をわずかにこの 値から減少します)テストを続けます。

補償レベルを増やす1つの方法はオーバーシュートパーセンテージを増やすことです。40% までは通常、安全です。

5.14 フィルター設定コマンド

このコマンドは電位と電流フィルターを設定するために使用します。

ポテンシャルフィルターはポテンシャル波形をフィルターするために使用され、二次 Bessel ローパスフィルターです。トランジェント成分を取り除くために使用できます。応用は階段波 ランプをリニアースィープに変換することです。

キャパシターはローパス RC フィルターを形成するために i/E コンバーターのフィードバック抵抗に接続されます。最初に高周波数ノイズを除きます。

ゲインステージの前に、シグナルフィルターが使用され、二次 Bessel ローパスフィルターです。

フィルターは測定中のノイズを低減するのに有効です。

システムはフィルター選択ダイアログボックスを表示し、フィルターパラメータを設定できます。

次のオプションはフィルターパラメータを設定できます。

フィルターの概念、パラメータについて詳しくなければ、自動設定を選択して下さい。 ポテンシャルフィルター

このボックスは実際のポテンシャルフィルター設定を表示します。

選択

ポテンシャルフィルターカットオフ周波数を選択します。これは二次 Bessel フィルターです。 このフィルターの設定は実験のタイプ、実験のタイムスケールに依存します。自動を選択しま すと、デフォルト設定になります。このフィルターは波形を適合するために使用します。インピー ダンス測定の場合、偽信号化を避けるために高周波成分をカットします。リニアースィープボ ルタンメトリーの場合、階段状波形を実際のポテンシャルスィープに変換します。

i/E 変換フィルター

このボックスは実際の電流 - 電圧コンバーターフィルター設定を表示します。

選択

i/E コンバーターフィルターカットオフ周波数を選択します。これは電流 - 電圧 (i/E) コンバー ターと組み合わせた RC フィルターです。フィルターの設定は測定のタイムスケールと実験の タイプに依存します。自動を選択すると、デフォルト設定になります。 あるカットオフ周波数が時々選択されません。つまり任意の感度スケールの場合、i/Eコンバー ターのフィードバック抵抗が調べられ、RCの組み合わせは選択したカットオフ周波数を構成 できません。これは相対的に低カットオフ周波数を選択しますが、低感度スケールを使用するか、 またはこれは相対的に高カットオフ周波数を選択するが、高感度スケールを使用すると起きま す。感度スケールを変更することにより最適なカットオフ周波数を設定できます。

シグナルフィルター

このボックスは実際のシグナルフィルター設定を表示します。

選択

シグナルフィルターカットオフ周波数を選択します。これは二次Besselフィルターです。フィルターの設定は実験のタイプ、タイムスケールに依存します。自動を選択しますと、デフォルト設定になります。

このコマンドはツールバーボタンがあります:

5.15 セルコマンド

このコマンドはパージ、攪拌、電気化学洗浄を制御します。攪拌、水銀滴下採取、前滴下、 安定化キャパシターを設定できます。

システムはセルコントロールダイアログボックスを表示し、セルコントロールを設定できます。

BROOM-R		
- 撤拝ラインのコントロールレベル (* 英されを目記的) (* Active Low) 四時年期詳 Stir Time (sec)	潮定計のSMDE:着下の 「 安定化コンデンサー 「「自然就定(9) 「「O _D 」 「「Off	
Botential (V) (0 	*#6番編和 「新王朝氏」」 第0 ・時間間隔((viseo)」 1 	 ▽ 測定の間の操 排値> ▽ 測定間のパージ(の) ▽ 同時に提拝しパージ □ 内部ダミーセルで試験 □ 別定間の Cell On ▽ 測定値初期電位に戻る

次のオプションはセルコントロールを設定できます。

攪拌ラインのコントロールレベル

攪拌ラインコントロールシグナルは高低のどちらか一方です。BAS 社は高コントロールシグ ナルを使用しています。また、PAR 社は低シグナルを使用しています。最適なコントロールレ ベルを選択するためにラジオボタンをクリックします。

迅速攪拌

迅速攪拌時間を入力できます。パラメータ範囲は1~32,767です。攪拌ボタンを押しますと 迅速攪拌が開始されます。

迅速パージ

迅速パージ時間を入力できます。パラメータ範囲は1~32,767です。パージボタンを押しま すと迅速パージが開始されます。

迅速セル ON

セルポテンシャル (-10 ~ +10 の範囲)、セル ON タイム (1 ~ 32,767 の範囲)を入力します。 セル ON ボタンを押しますと、任意の時間の任意のポテンシャルで電極を安定させます

水銀滴下採取

これは水銀滴を秤量し、採取するための有効なオプションです。採取したい滴数 (1 ~ 1,000 の範囲)、滴間のタイムインターバル (0.5 ~ 10) を入力します。採取プッシュボタンを押します と、採取を開始します。

測定の間の攪拌

この項目をチェックしますと測定中の攪拌が行えます。この項目はコントロールメニューの 測定状況コマンドから ON、OFF できます。

測定の間のパージ

この項目をチェックしますと測定中のパージが行えます。この項目はコントロールメニューの測定状況コマンドから ON、OFF できます。

測定前の SMDE 滴下

パラメータのデフォルト値は1です。通常システムは静止水銀滴下電極 (SMDE) が使用され る時、測定前に新しい滴を形成するために滴下 / ノックを組み合せます。このデフォルト条件 を変更できます。パラメータ範囲は0~20です。前滴下は0に設定されている場合、次の測定 には前の測定に使用された滴下条件が使用されます。SMDEの場合、キャピラリーに気泡が付 着し、接触不良が起ることがあります。前滴下は1滴以上が有効です。

このオプションはコントロールメニューの測定状況コマンドで変更できます。

安定化キャパシター

カウンター電極と参照電極の間には 0.1 F 安定化キャパシターが接続されています。キャパ シターはポテンショスタットを安定化しますが、いくらかシステムを減速させます。これは作 用電極の二重層キャパシタンスが大きい時、つまり、バルク電気分解または大きな iR 補償が必 要の場合、特に有効です。

この安定化キャパシターのデフォルトは自動設定です。ラジオボタンの一つをクリックすることにより、自動設定を使用不可にできます。

4 電極

ポテンショスタットを4電極にセットします。4電極は電極クリップ、コネクター、リレー、 基板の接触抵抗による電位降下を探知するために使用します。接触抵抗は約 $0.2 \sim 0.3 \Omega$ です。 電流が250 mAの場合、50 ~ 75 mVの降下に相当します。バッテリー等の低インピーダンス測 定には使用できません。4電極を用いますと、接触抵抗の影響は無視でき、低インピーダンス 測定を行うことができます。

相対的に大きなインピーダンス(10Ω以上)の場合、4電極はオフにします。

測定中セル ON

デフォルトでは、測定の間セル ON になります、測定後、セル OFF になります。この項目を チェックしますと、注意が始ります。セル ON 時、不適切にセルを接続または不接続する場合、 電極にダメージを与えます。最初に参照電極とカウンター電極を接続して下さい。取外す場合、 作用電極を最初にします。

測定後初期電位に戻る

これをチェックしておきますと、測定後、初期電位に戻ります。さもなければ、電位は前の 測定の最終値になります。測定中セル ON をチェックしている場合のみ意味があります。

このコマンドはツールバーボタンです。:

5.16 ステップファンクションコマンド

連続矩形波を発生するためのコマンドです。このコマンドは電極処理(または洗浄)または 他の目的に使用できます。

データは採取、表示されません。

システムはステップファンクションダイアログボックスを表示し、ステップ条件設定でき、 ステップファンクションジェネレーターを開始します。

開始電位(E)	2	ок
期間(D)(s)	0	キャンセル
ステップ電位(<u>1</u>)(V)/it(A)	0	ヘルプ(H)
ステップ時間1(型(s)	0.1	() () () () () () () () () () () () () (
ステップ電位(2)(V)/i2(A)	0	
ステップ時間2(<u>T</u>)(s)	0.1	
ステップセグメント(S)	2	-

次のオプションはステップポテンシャル、期間、セグメントを設定することができます。

パラメータ	範囲	内容
開始電位 (V)	-10 ~ +10	開始電位
期間 (s)	$0 \sim 100,000$	開始電位の期間
ステップ電位 1 (V)	-10 ~ +10	第一ステップ電位
ステップ時間 1 (Sec)	0.0001 ~ 100,000	各ステップの期間
ステップ電位 2 (V)	-10 ~ +10	第二ステップ電位
ステップ時間 2 (Sec)	0.0001 ~ 100,000	各ステップの期間
ステップセグメント	$1 \sim 2,000,000$	ステップセグメント、半サイクルが一セグメント
ガルバノスタットモード	チェックまたは未チェック	ポテンショスタットまたはガルバノスタットモードの 選択

注:

1. 開始電位、ステップ電位1、ステップ電位2のポテンシャル範囲は13.1V以下です。

2. 開始電位期間は 0.001 sec 以下の場合、開始電位は無視されます。

3. ステップはステップ電位1、ステップ電位2、ステップ電位1、ステップ電位2…の連続です。 終了ポテンシャルは奇数セグメントの場合、ステップ1電位となり、偶数セグメントの場合、 ステップ電位2となります。

測定

測定ボタンを押しますと、ステップファンクションジェネレーターが動きます。ステータス ボックスはステップ数、残りのステップ、時間を示しながら表示します。停止プッシュボタン を押しますと、この機能はキャンセルできます。データは採取、表示されません。

5.17前処理コマンド

測定する前に作用電極を処理するためのコマンドです。これは電極洗浄または他の使用に有 効です。前処理は析出または静止時間の前に起こります。

下記図は測定前の前処理ダイアログボックスです。

定前の前処理条件	
「前処理条件可任)	ОК
第一 ステップ	キャンセル
■位(P)(V) 0	ヘルプ田
時間(1)(s)	
第二ステップ	
電位(፩)(∨) 0	
時間() (s)	
第三ステップ	
電位(6)(の 0	
時間(の)(の) 0	Electrode 2

3ステップの条件でプログラムできます。次のオプションは前処理を設定できます。:

前処理使用可能

前処理は析出または静止時間の前に設定します。このボックスを未チェックにすると前処理 ステップを回避します。

ポテンシャル

パラメータ範囲は-10~10Vです。

時間

パラメータ範囲は0~6,400です。特定のステップの前処理時間がゼロの場合、このステップを回避します。時間設定は1msec以下の場合、時間のコントロールは正確でないかもしれません。

5.18回転ディスク電極コマンド

回転ディスク電極の回転速度を設定するためのコマンドです。いろいろなケースで回転を ON、OFF できます。

下記図は回転ディスク電極制御ダイアログボックスです。

回転ディスク電極制御	
回転速度(<u>S</u>) (rpm) 3600	ок
▼ 析出時間中の回転(D)	キャンセル
┌ 静止時間中の回転(2)	ヘルプ(H)
測定中の回転(円)	
▶ 測定間の回転(6)	

次のオプションは回転ディスク電極制御を設定できます。:

回転速度 (rpm)

このパラメータは回転ディスク電極の速度を設定できます。回転速度範囲は 0 ~ 10,000 rpm です。機器の背面にバナナジャック口があり、0 ~ 10,000 rpm は 0 ~ 10 V に相当します。

析出中の回転

この項をチェックしますと、ストリッピングモードでの析出中回転します。この項目はコン トロールメニューの測定状況コマンドを ON、OFF します。

静止時間中の回転

この項をチェックしますと、静止時間中回転します。この項目はコントロールメニューの測 定状況コマンドを ON、OFF します。

測定中の回転

この項をチェックしますと、測定中回転します。この項目はコントロールメニューの測定状 況コマンドを ON、OFF します。

測定の間の回転

この項をチェックしますと、測定の間回転します。この項目はコントロールメニューの測定 状況コマンドを ON、OFF します。

5.19 その他コントロールコマンド

このコマンドは冷却ファンと作用電極の静電気放電保護を ON、OFF コントロールします。 下図はその他コントロールダイアログボックスです。

次のオプションはファンをコントロール設定できます。:

ファンコントロール

機器は熱を放散します。殆どの部品は最小電力を消費します。セルに流れる電流が高い場合、バッファー アンプと電圧レギュレーター、その他アンプは暖かくなります。ファンを ON にし、熱を放散し、機器 を冷却します。しかしながら、一般的にはメカニカルノイズと同様に電気的な干渉があります。電流感 度 10⁻¹²A/V 以下の時、または自動感度設定が選択されている場合、ファンは自動的に ON になります。 選択ボックスをチェックしますと、ファンを測定の間または測定間 ON にできます。

WE 静電気放電保護

作用電極入力の静電気放電保護回路があります。アンプの入力への静電気放電ダメージを低減するのに 有効です。しかしながら、保護回路は入力ステージで漏れ電流を生じます。保護回路による漏れ電流は 通常 50 pA 以下です。電流がナノレベルまたはそれ以上ならば大きな問題にはなりません。感度が高い 場合、放電保護回路を OFF にするかもしれまぜんが、電気泳動の電気化学検出を行う場合、高電圧フィー ドスルーを防ぐために常に保護回路は接続する必要があります。

5.20 ストリッピングモードコマンド

このコマンドはストリッピングモードの使用可能、使用不可、析出条件を設定できます。ス トリッピングモードコマンドは LSV, SCV, DPV, NPV, SWV, ACV, SHACV のテクニックにしか利 用できません。ポーラログラフィーモードが選択されていると、利用できません。 下記図はストリッピング制御ダイアログボックスです。

 ・ 初期電位 ① ・ 初期電位 ② ・ 初期電位 ② ・ 前止電位 ② ・ 初期電位 ② ・ 前非電位 ③ ・ 初期電位 ③ ・ 前非電位 ④ ・ 前非電位 ● ・ 前非 ● ・ 前# ・ ・ ・	ストリッピンクモード可(M)	OK
 (析出中攪拌⑤) ヘルブ(出) 析出電位 ⑥ 初期電位 Ø ⑥ 析出電位 (D) 静止電位 ⑥ 初期電位 Ø ⑦ 静止電位 (Q) 	析出中パージ(P)	キャンセル
析出電位 ● 初期電位 Φ ● 析出電位 Φ 静止電位 ● 初期電位 Φ ● 静止電位 Φ	7 析出中攪拌(5)	
 ⑦ 初期電位 Φ ● 析出電位 Φ ● 静止電位 ● 初期電位 Φ ● 静止電位 Φ 	析出電位	-
静止電位 ● 初期電位の ● 静止電位@)	● 初期電位① ○ 析出電位①	
● 初期電位Φ ● 静止電位@)	静止電位	
	© 初期電位Φ ● 静止電位@)	
	f:出雷位(E)(V) 0	
出時間① (sec)	f:出電位(E) (V)	

次のオプションはストリッピングモード制御を設定できます。:

ストリッピングモード使用可能

この項目をチェックすると、ストリッピングモードは使用可能です。可能にする場合、析出 ステップが測定中の静止時間ステップ前に挿入されます。析出電位、時間はこのダイアログボッ クスから選択できます。

析出期間後、静止時間前、ポテンシャルは初期電位に戻ります。ストリッピングステップ中 電位走査は初期電位から開始されます。

析出中のパージ

この項目をチェックすると、システムは析出期間中パージします。

析出中の攪拌

この項目をチェックすると、システムは析出期間中攪拌します。

析出電位

ラジオボタンの一つをクリックすることで、析出電位として初期電位または他の電位を選択 できます。析出電位として初期電位を選択しない場合、下記に示す析出電位を入力します。

析出電位

初期電位と異なる析出電位を入力します。この値は初期電位が析出電位として選択されると効果がありません。

析出時間

析出時間を入力します。パラメータ範囲は0~100,000です。

6.1 現在のデータプロットコマンド

現在のデータをプロットするためのコマンドです。プロットをズームするために使用するコ マンドです。マウスカーソルをX軸、Y軸にてクリックすることにより、軸オプションコマン ドが表示されます。軸の再スケールならびに軸の名称変更を簡単に行うことができます。感度 を同一に設定することにより、データの重ね書き、比較等を行う上で便利な機能です。

bオプション		<u></u>
-グリッド、反転 ▼ <u>グリッド(G)</u> 「 反転()	■ 電流密度(0) ■極面積(0) 1	OK キャンセル
軸名表示 ⓒ Scientific ⓒ Engineering	☐ 電位 vs 参照電極 参照電極(c) Ag/AgCI	<u></u>
Long Divisions: Auto	Short Auto	_
□ \$4FW(I)	Unit	
グリッド: 変更 Color	Point 厚み	
XY#8:	E更 1 -	
プリンター上のY軸名	90 degree 🗾	
A LO MARKED TO A LO M		

軸の設定はグラフオプションの項でも行えますが、ここでの特徴は軸の表示の選択が行えま す。また、軸名表示を Scientific としますと、1 μ アンペアーを 1e-6A と表示できます。また、 Engineering の場合、1 μ A と表示します。

データフィルードにマウスを移動し、ダブルクリックしますとテキスト挿入ダイアログボック スが表示されます。

5+20			USALAS	DK
X: 0.24128	YE 1.16a-006	CRISIN	0	キャンセル
	スタイル	111 B		へはブ田
Anallianne	The galant	F	史更但)	デフセルト回
レッキントあって		0.00		Monochrome

テキストフィールドに表示したいテキストを入力できます。取り消しボタンを用いてテキストフィールドを消去できます。テキストのX軸、Y軸の位置も変更できます。挿入したい位置にマウスを移動し、マウスをダブルクリックするとX,Yの座標位置が表示されます。また、文字は1度単位で任意の角度に回転できます。

入力したテキストはデータと一緒に保存できます。

テクニックによりデータは各種形式で表示できます。

テクニック	データ表示形式
CV	スィープセグメント
TAFEL	log 電流~電位
	電流~電位
	電流密度~電位
CA	i ~ t
	$i \sim t^{-1/2}$
CC	Q ~ t
	$Q \sim t^{1/2}$
SWV	フォワード電流
	リバース電流
	フォワード、リバース電流
	フォワード、リバース差分電流
	フォワード、リバース電流の合計
	フォワード、リバース電流、総計電流
	フォワード、リバース電流、差分電流
ACV	絶対電流
	位相選択電流
	抵抗
	キャパシタンス
PSACV	絶対電流
	位相選択電流
	抵抗
	キャパシタンス
BE	チャージ 対 時間
	電流 対 時間
	電流 対 log (時間)
IMP	Bode: $\log Z \sim \log (freq)$
	Bode: phase ~ log (freq)
	Bode: log Z"& Z'~ log (freq)
	Bode: $\log Y \sim \log (freq)$
	Nyquist: Z"~ Z'
	Admittance: Y"~ Y'
	ワールブルグ:Z''& Z'~ w ^{-1/2}
	Z'~ w Z"
	Z'~ Z"w
	$\cot (\text{phase}) \sim W^{1/2}$
IMP-t or IMP-E	log Z [~] or E
	phase [~] ' or E
	Z^{-1} or E

 Z^{r^t} or E $Z^{{"}^{-t}}$ or E $Z'\& Z''^{t}$ or E $\log{(Z'\& {Z''^{^{-t}}})}$ or E $\log Y^{-t}$ or E Y^{-t} or E Y'^{t} or E $Y'' \sim t \text{ or } E$ Y'& Y"~ t or E $\log (Y' \& Y''^{t})$ or E $Rs \sim E$ IMP-E $Cs \sim E$ Rp ~ E Cp ~ E $1 / (Cs \times Cs) \sim E$ (Mott-Schottky) $1 / (Cp \times Cp) \sim E$ (Mott-Schottky) 電位~時間 CP, PSA dE/dt ~ 時間 dt/dE ~ 電位 電位~チャージ

データ表示フォーマットを選択する場合、グラフオプションコマンドを起動します。

データがディスクに保存された時、表示フォーマットもまた保存されます。データが読 込まれた時、保存される前と同じように表示されます。これはまた上書きプロット、パラレル プロット、多数ファイル印刷にて有効です。

グラフオプション、色と説明、フォントコマンドによってデータプロットをカスタマイ ズできます。

このコマンドデータがないと使用できません。

このコマンドはツールバーボタンがあります:

6.2 データ重ね書き表示コマンド

このコマンドを使用すると、シングルプロットに多数のデータをプロットします。これは特 にデータ比較に有効です。色と説明は対応するファイル名と一緒に表示されます。プロットし たい必要なデータを選択できます。

多数のファイルを選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。

このコマンドは同じディレクトリーの多数のファイルを選択できます。異なるディレクト リーまたはディスクでデータを多重にする場合、データを多重に追加コマンドを使用して下さ い。

> 一次重要書きに追加 ? X ファイルの場所の - 🖻 🙆 🗗 🖬 🖬 🔁 Data Acvibin Ca3bin Dpa2bin BI dbir 21 Acv2bin Getbin w4bin Dov1 bin Ð1 Dpv2bin Acvabin Cc2bin Ddpat.bin Dowabin DI. Bethin Cothin Ddpa2bin Impt bin Galbin DI. Ovibin Dopybin 1 Ga2bin Dpal bin Imp2bin Gr2bm . ファイル名的》 "Ov4bin" "Ov8bin" "Ov2bin" 要の ファイルの種類(1) Data Files (kbin) キャンセル *

下図は多重プロットのダイアログボックスです:

プロットのスケールは現在の電流データに応じて決ります。このコマンドはデータのタイプ をチェックしません。両 X, Y 値がプロットスケールの中にあるのであれば、データポイントは プロットされます。

グラフオプション色、説明フォントコマンドによってデータプロットをカスタマイズできま す。特に、各トレースの色、説明は色と説明コマンドにて指定できます。

データ重ね書き表示コマンドはデータがないと使用できません。

6.3 データを重ね書きに追加コマンド

このコマンドは上書きプロットコマンドの補足的なものです。それは全てのデータを再選択 することをせずに、更にデータを上書きプロットに追加します。異なるディレクトリー、ディ スクのデータを多重できます。多数のファイルが選択できます。多数のファイルを選択する場合、 選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しながら、一度に左マウ スボタンでクリックします。

下記図はデータ多重の追加ダイアログボックスです:

77-1人的場所回	Data	2	0 0 0	
Acv1bin Acv2bin Acv3bin Betbin Catbin Catbin	Co3bin Co1bin Co2bin Co1bin Co1bin Co2bin	Codber Score Dopatibin Dopatibin Dopybin Dipatibin	Dps2bin Dpv1 bin Dpv2bin Dpv3bin Inp1 bin Inp2 bin	
177(非名则)	POv4bin" "Ov8bi	n" "Ov2bin"	Re	K (Q)
ファイルの種類の	Data Files (kbin)	0-3011200	* **	24714

プロットのスケールは現在の電流データに応じて決まります。このコマンドはデータのタイ プをチェックしません。両 X, Y 値がプロットスケールの中にあるのであれば、データポイント はプロットされます。

グラフオプション色、説明、フォントコマンドによってデータプロットをカスタマイズでき ます。特に、各トレースの色、説明は色と説明コマンドにて指定できます。

データ重ね書きに追加コマンドはデータがないと使用できません。このコマンドは現在のプ ロット状況が上書きプロットでない場合、使用できません。

6.4 パラレルデータ表示コマンド

このコマンドはパラレルモードで多数のデータセットをプロットします。これは異なるテク ニック、データ比較したいデータを観察するのに有効です。すでに選択したデータと一緒にプ ロットしたいデータファイルを選択できます。多数のファイルが選択できます。多数のファイ ルを選択する場合、選択したいファイル名にマウスカーソルをポイントし、Ctrl キーを押しな がら、一度に左マウスボタンでクリックします。

このコマンドは同じディレクトリーで多数のファイルを選択できます。異なるディレクト リー、またはディスクのデータをパラレルにする場合、データをパラレルに追加コマンドを使 用して下さい。

さいけークネテ				?
77 们动地附单	Data			
Acv1 bin Acv2 bin Acv3 bin Bel bin Cal bin Cal bin	Ca3bin Octbin Octbin Octbin Octbin Ovtbin Ovtbin	Cv3bin Cv4bin Ddpa1bin Cdpa2bin Dopy.bin Copy.bin	Dpa2 bin Dpv1 bin Dpv2 bin Dpv3 bin Dpv3 bin Dpv3 bin Dpv2 bin	
4				<u>></u>
77イル名创2	× 6m			WK (C)
77(110)種類①	Data Files (*bin)			的地址

下記図はパラレルデータプロットのダイアログボックスです:

スケール固定が使用されていない場合、各プロットのスケールは自動的にディスクから読込 まれた各データセットに応じて決ります。スケールを固定する場合、全てのプロットは同じ固 定スケールによって表示されます。スケールを固定するにはグラフオプションコマンドを使用 して下さい。

グラフオプション色、説明フォントコマンドによって、データプロットをカスタマイズでき ます。

パラレル表示コマンドはデータが無い時、無効です。

6.5 データをパラレルに追加コマンド

このコマンドはパラレルプロットコマンドの補足的なものです。それは全てのデータを再選 択することをせずに、更にデータをパラレルプロットに追加します。異なるディレクトリー、ディ スケットのデータをパラレルプロットに追加とプロット順番を整理します。多数のファイルが 選択できます。多数のファイルを選択する場合、選択したいファイル名にマウスカーソルをポ イントし、Ctrl キーを押しながら、一度に左マウスボタンでクリックします。

下記図はデータをパラレルに追加ダイアログボックスです:

ーちをパラレルンEt	i i i i i i i i i i i i i i i i i i i			22
77-11-0場階中。	Data	3		
CAcv1bin Acv2bin Berbin Calbin Calbin Calbin	Ca3bin Gotbin Gotbin Cotbin Gotbin Gotbin	Dog bin Dogal bin Dogal bin Dogal bin Dogothin Dogal bin	Dpv2.bin Dpv1.bin Dpv2.bin Dpv9.bin Dpv9.bin Imp1.bin Imp2.bin	
し	Ovibin" "Ovab	n ^v		K (D)
ファイルの理想の	Data Files (*bin)	16	* 44	のセル

プロットスケールは現在のデータに応じてプロットされます。このコマンドはデータの種類 をチェックしません。両 X,Y 値がプロットスケールに入るならば、データポイントはプロット されます。

グラフオプション色、説明フォントコマンドによってデータプロットをカスタマイズできま す。

このコマンドはデータがないと使用できません。このコマンドは現在のプロット状況がパラ レルプロットでないと使用できません。

6.6 ズームコマンド

このコマンドはデータプロットを拡大します。

これはトグルスイッチです。ズーム機能が使用できる時、チェックマークがメニュー項目の 下に表れます。ツールバーのズームを押しますと、データプロットエリアにマウスカーソルを 移動させると上向き矢印のカーソルが現れます。

拡大する場合、一つの角でマウスボタンを押し、観察したエリアの対角線上にドラッグし、 マウスボタンを放します。

元に戻したい場合、ズームコマンドを再度クリックします。この操作はズーム機能を無効に します。

このコマンドのツールバーボタンは下図の通り:

6.7 マニュアル結果コマンド

このコマンドはピークまたは波形ポテンシャル、電流、面積をマニュアルで結果を表示する ことができます。ピークまたは波形のベースラインを視覚的に調べることができます。

これはトグルスイッチです。マニュアル結果コマンドを有効にした時、チェックマークがメ ニュー項目の下に表れます。マニュアル結果ツールバーボタンが押された状態にあります。デー タプロットエリアにマウスカーソルを移動させると上向き矢印のカーソルが現れます。

ピークまたは波形を正確にレポートするために、ピーク定義コマンドによりピーク波形を定 義しなければなりません。ピーク波形はガウス、拡散またはシグモイダルになります。ピーク(ま たは波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(または波形)電流、 ピーク面積を知りたい場合、調べることができます。

ガウスピークの場合、ベースラインはピークの2つのサイドの2ポイントにより調べられま す。1ポイントでマウスボタンを押し、それをドラッグし、他のポイントでマウスボタンを放 します。ピークを接続する垂線がベースラインとして表れます。数値レポートはプロットの右 側に示されます。

拡散ピークの場合、ベースラインはピークの底部を拡張して調べます。ベースラインを調べ るために、ベースラインの底部でマウスボタンを押し、ドラッグしピークポテンシャルを通し た後、マウスボタンを放します。ピークを接続する垂線がベースラインとして表れます。数値 レポートはプロットの右側に示されます。注意:ピーク面積がレポートされた時、それは半値 ピーク面積です。

シグモイド波形の場合、2つのベースラインが必要です。一つは波形の底部にします。もう 一つは波形のプラトー部分です。ベースラインを調べるために、マウスボタンを押し、ドラッ グし、放します。2っのベースラインを繋ぐ垂線、波形の中間を通る線が表れます。数値デー タはプロットの右側に示されます。

次のコマンドでマニュアルでピーク検索を行えます。 このコマンドのツールバーボタンは下図の通り:

6.8 ピーク定義コマンド

このコマンドを使用すると、ガウス、拡散またはシグモイダルのピーク波形を定義します。 ピーク(または波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(または 波形)電流、ピーク面積を報告したい場合、設定することができます。

ピーク定義は自動、マニュアル結果レポートが使用されます。

下記図はピーク定義ダイアログボックスです:

ミーク形状	レポートオプション	ОК
• সুনুহত্ত	✓ ピーク、波形電位(2)	キャンセル
C 拡散(2)	「 手返電位円) ▼ ビーク、波形電流(c)	_ ヘルプ (円)
C シグモイド(<u>6</u>)		

次のオプションはピーク波形を定義でき、報告に必要なパラメータも設定できます。: ピーク波形

データの性質に応じて、ピーク波形を選択できます。ピーク波形はガウス、拡散またはシグ モイドです。ピーク波形は電気化学テクニックに応じて決まります。テクニックを変える毎に デフォルト値はピーク波形を割り当てます。しかし、設定は変更できます。

レポートオプション

ピーク(または波形)ポテンシャル、半値ピーク(または波形)ポテンシャル、ピーク(また は波形)電流、ピーク面積を報告したい場合、設定することができます。

ピークまたは波形検索ポテンシャル範囲

ピーク波形により、ピーク検索ポテンシャル範囲は調整されます。幅の広いピークまたは波 形の場合、検索ポテンシャル範囲は大きくなり、逆もまた同様です。検索ポテンシャル範囲はピー クまたは波形の両サイドを含みます。

このパラメータは自動結果レポートだけに意味があります。

サイクリックボルタンメトリーデータの場合、グラフメニューのグラフオプションコマンド でセグメントを選択できます。

このコマンドのツールバーボタンは下図の通り:

₩

6.9 XY プロットコマンド

このコマンドを使用すると、X-Y データを作成できます。データに直線フィッティングもできます。

データ編集後、OK ボタンをクリックします。 X-Y プロットは一時的なものです。他の データ表示コマンドが実行されますと、それは消えます。しかし、データプロットをカス タマイズするためにグラフオプション、色、説明、フォントコマンドが使用できます。 下記図はX Y プロットのダイアログボックスです:

10723	
.00,7.64	キャンセル
0.1 0,7.98	
0.15,8.08	ヘルブ(円)
0.20,8.18	
0.30 0.20	読込み(<u>P</u>)
0.40.8.40	
0.45,8.43	1条存(5)
0.50,8.44	
0.55,8.44	里14番8(型)
0.50,8.42	パラレルプロット6
0.00,8.38	
0.75.8.28	ブロット(P)
0.80,8.21	
0.90,8.04	
1.00,7.83	-4
	□ □ 直線フィッティング
タイトルの Potential	単位(U)) ▽
	# (t) [sec
Colley MUX In oppose time	The factor is a second

次のオプションはデータの編集、プロットオプションの入力が行えます:

XY データ配列編集

XYデータポイントを入力します。セパレーターとしてコンマまたはスペースを使用します。 データの各対は一行となります。:

> x1, y1 x2, y2 x3, y3

.....

読み込み

このコマンドは保存データを読み込むために使用します。

保存

このコマンドはデータを保存するために使用します。XY タイトル、単位、ヘッダー、注意 はデータと一緒に保存されます。

多重プロット

このコマンドを使用すると幾つかのデータプロットを多重するために使用します。記号と記 号に繋ぐライン両方が必要ならば、2つの異なる名前でデータ保存、色と説明コマンドを使用 して、最適な説明の選択をします。スケールを固定する場合、グラフオプションコマンドを使 用してください。

システムは多重データ表示ダイアログボックスを表示し、XYデータ配列編集でデータと一緒にプロットしたいデータファイルを選択できます。多数のファイルが選択できます。

プロットのスケールはXY データ配列編集でのデータに応じて決まります。両X、Y 値がプ ロットスケールの中にある場合、データポイントはプロットされます。

パラレルプロット

このコマンドを使用すると、パラレルモードで多数のデータセットをプロットします。

システムはパラレルデータを表示し、XYデータ配列編集でデータと一緒にプロットしたい データファイルを選択できます。多数のファイルが選択できます。

スケールが固定されていない場合、各プロットはディスクから読み込まれる各データセット に応じてスケールが決まります。後者の場合、すべてのプロットは同じ固定スケールを持ちます。 スケールを固定する場合、グラフオプションコマンドを使用して下さい。

プロット

このコマンドを使用すると XY データ配列編集をプロットします。

プロットのスケールはデータ範囲に応じて自動的に決まります。スケールを固定する場合、 グラフオプションコマンドを使用して下さい。

XYタイトル

XYタイトルを入力します。

単位

カスタマイズした XY 軸タイトルの単位または次元を入力

ヘッダー

これはヘッダーテキスト編集ボックスです。ヘッダーをここに入力しますと、プロットのトッ プにヘッダーを表示します。グラフオプションコマンドを使用してヘッダーチェックボックス をチェックします。

注

これは注テキスト編集ボックスです。注をここに入力します。注はプロットに表示できませんが、データファイルに保存できます。データのコメント、後で目的、データの条件を思い出 すために使用します。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最適なフィットラインはプロット上に表れます。

6.10 ピーク変数 対 スキャン速度プロットコマンド

このコマンドはピーク電流 対 スキャン速度、ピーク電流 対 スキャン速度の平方根、ピーク ポテンシャル 対 スキャン速度の対数をプロットするために使用します。可逆表面反応の場合、 ピーク電流はスキャン速度に比例します。可逆拡散系の場合、ピーク電流はスキャン速度の平 方根に比例します。ピークポテンシャルは可逆系の場合、独立しています。スキャン速度の関 数としてピークポテンシャルのシフトは遅い反応速度または化学的な複雑さのどちらかを示し ます。

データを直線フィッティングできます。このコマンドはサイクリックボルタンメトリーまた はリニアースィープボルタンメトリーデータにのみ働きます。CV データの場合、システムは 最近使用されたデータセグメントのみ検索します。

ピークの電位窓を設定し、最適なファイルを選択した後、OK ボタンをクリックし、プロットします。 X-Y プロットは一時的です。他のデータ表示コマンドが実行されますと、それは消えます。しかし、プロットをカスタマイズするためにグラフオプション、色、説明、フォントコマンドは使用できます。

システムはピークパラメータ 対 スキャン速度プロットダイアログボックスを表示します:

Ep F <u>r</u> om (V) D Ep <u>T</u> o (V) D	キャンセル
Ep <u>T</u> o (V)	10
	ヘルプモリ
プロットのタイプ	ファイル選択住
「 ip vs スキャン速度(c)	
☞ ip vs 平方根(スキャン速度)	

次のオプションはピークの電位窓の設定、データファイルの選択ができます:

ピーク電位窓

可能なピークポテンシャル範囲を入力します。システムは指定電位範囲を検索します。この ポテンシャル範囲で最初のピークが検出されると、プロットに使用されます。

プロットのタイプ

ピーク電流 対 スキャン速度またはピーク電流 対 スキャン速度の平方根またはピークポテン シャル 対 スキャン速度の対数をプロットできます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最適なフィットラインはプロット上に表れます。

ファイル選択

データをプロットする場合、ファイルを選択しなければなりません。CV または LSV データ のみが読込まれます。他のテクニックで得られたデータは無視されます。少なくとも異なるス キャン速度で得られた3つのデータファイルを選択します。

6.10.1 ピーク変数プロットコマンドの操作法

グラフィックツール内にあるこのコマンドはピーク電流 対 スキャン速度、ピーク電流 対 ス キャン速度の平方根、ピークポテンシャル 対 スキャン速度の対数をプロットを自動的に行う際 に使用します。

このコマンドはサイクリックボルタンメトリーまたはリニアースィープボルタンメトリー データにのみ働きます。CV データの場合、システムは最初のデータセグメントのみ検索します。

ピーク変数プロットコマンドをクリックし、ピークの電位窓等の諸条件を設定します。

ピーク電位窓

ピークポテンシャル範囲を入力します。システムは指定電位範囲を検索します。このポテン シャル範囲で最初のピークが検出されると、プロットに使用されます。

プロットのタイプ

ピーク電流 対 スキャン速度またはピーク電流 対 スキャン速度の平方根またはピークポテン シャル 対 スキャン速度の対数をプロットできます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。

可逆表面反応の場合、ピーク電流はスキャン速度に比例します。 薄層セルの場合

可逆系:

$$i_{\rm p} = \frac{n^2 F^2 v V C_{\rm o}^*}{4RT}$$

不可逆系:
$$i_{\rm p} = \frac{na n_{\rm a} F^2 V v C_{\rm O}^*}{2.718 R T}$$

表面反応

可逆系:

$$i_{\rm p} = \frac{n^2 F^2 v A \, \Gamma_{\rm o}^*}{4RT}$$

不可逆系:
$$i_{\rm p} = \frac{n a n_{\rm a} F^2 A v \Gamma_{\rm O}^*}{2.718 R T}$$

可逆拡散系の場合、ピーク電流はスキャン速度の平方根に比例します。

可逆系:
$$i_{\rm p} = (2.69 \times 10^5) n^{3/2} A D_{\rm O}^{1/2} v^{1/2} C_{\rm O}^*$$

不可逆系: $i_{\rm p} = (2.99 \times 10^5) n (a n_{\rm a})^{1/2} A D_{\rm O}^{1/2} v^{1/2} C_{\rm O}^*$

ピークポテンシャルは可逆系の場合、独立しています。スキャン速度の関数としてピークポテ ンシャルのシフトは遅い反応速度または化学的な複雑さのどちらかを示します。 先行反応 (C.E.)

$$E_{p/2} = E^{o} - \frac{0.007}{n} - \frac{0.029}{n} \log k_{b} + \frac{0.029}{n} \log v$$

k_bは先行反応の逆反応速度定数です。

後続反応

$$E_{\rm p} = E^{\rm O} + \frac{RT}{nF} \ln \frac{D_{\rm O}^{1/2}}{D_{\rm P}^{1/2}} - 0.78 \frac{RT}{nF} + \frac{RT}{2nF} \ln \frac{kRT}{nFv}$$

ファイル選択

必要なファイルを選択した後、開くボタンを クリックし、目的のデータを取り込みまれます。CV またはLSVデータのみが読込まれます。他のテクニッ クで得られたデータは無視されます。少なくとも異 なるスキャン速度で得られた3つのデータファイル を選択します。

プロット

取り込みが終了後、OK をクリックするとプ ロットがおこなわれます。プロットは一時的 なもので、他のデータ表示コマンドが実行さ れますとグラフは消えますが、プロットをカ スタマイズするためのグラフオプション、色、 説明、フォントコマンドは使用できます。

k は化学反応速度定数です。

6.11 電流-電位半対数プロットコマンド

このコマンドを使用しますと、電流ー電圧半対数プロットを作成します。このプロットは定常状態応答のデータ解析には有効です。半積分または積分による拡散またはピーク 波形の応答をシグモイダル曲線に変換でき、データ解析を行います。可逆反応の場合、ポ テンシャル軸の切片は半波電位で勾配 0.059/n mV です。予想した勾配からのずれは遅い 反応速度または電極反応の複雑さを示します。

データの直線フィッテングを行うこともできます。

プロットのオプションを設定した後、OK ボタンをクリックし、プロットします。 X-Y プロットは一時的です。他のデータ表示コマンドが実行されますと、それは消えます。しかし、データプロットをカスタマイズするためにグラフオプション、色、説明、フォントコマンドは使用できます。

システムは電流 - 電圧半対数プロットダイアログボックスを表示します:

8位窓	ок
E <u>F</u> rom (V) 🛐	 キャンセル
е <u>т</u> о (V)	 へルプ(H)

次のオプションはプロットパラメータを設定できます:

電位窓

プロットしたいデータの電位窓を入力します。電位窓は 0.059/n V 以内の半波電位周辺です。 データポイントは指定電位窓を超えるデータポイントは無視されます。

直線フィッティング

このボックスをチェックしますと、データは最小二乗法により直線的にフィットします。最 適なフィットラインはプロット上に表れます。

6.12 スペシャルプロットコマンド

このコマンドは腐食領域で用いられる分極抵抗を算出します。

リニアスィープボルタンメトリーの場合、測定したデータをスペシャルプロットでデータ解 析することにより分極抵抗が得られます。分極抵抗プロットのメニューを下記に示します。

ē 位窓 ————		ОК
E (V, i=0)	0.301	キャンセル
Window (V) 0.	0.03	

中心電位と電位範囲を入力し、OK をクリックしますと、分極抵抗プロットが表示されます。 そしてデータの中に分極抵抗と相関係数が算出されます。分極抵抗プロットは一時的な計算な ので、データ表示コマンドを立ち上げますと、画面は消えてしまいます。また、データを分り 易い形式で表示させる場合、グラフオプションの色、説明コマンドを用いてデータポイントを 見やすい形式に変換して下さい。

スペシャルプロットの操作法

このコマンドでは、LSV における分極抵抗のプロットが行えます。LSV で測定したグラフを 表示後、グラフィックツール内のスペシャルプロットをクリックします。

コマンドをクリックすると、電流値がOAとなる電位をプログラムが自動的にチェックし下 記のように表示します。Window(V)により表示する電位範囲を指定します。もし、OAの測定 点が見つからない場合にはエラーメッセージが表示されます。

電位窓		ок
E (V, i=0)	0.301	キャンセル
Window (V)	0.03	

OK をクリックするとプロットがおこなわれます。プロットは一時的なもので、他のデータ表示コマンドが実行されますとグラフは消えますが、プロットをカスタマイズするためのグラフオプション、色、説明、フォントコマンドは使用できます。

6.13 グラフオプションコマンド

このコマンドを使用すると、グラフプロットオプションを選択できす。

グラフオプションは選択的にプロット見出し、XY グリッド、XY 軸反転を ON、OFF できます。 XY 軸の固定、XY 軸タイトルのカスタマイズ、データが一緒に保存できるメモを書くことがで きます。

プログラムを終了した時、ほとんどのパラメータは保存されます。プログラムを再スタート した時、再読込みします。

下記図はグラフオプションダイアログボックスです:

ラフオブション - スクリーン - マ ヘッダー(の) - 一 軸(の)	ブリンター 「マ ヘッダー(e) 「マ 軸⊗」	グリッド /反転	 キャンセル
 マ ペースライン(B) マ 変数(m) マ 結果(R) 	 ✓ ペースライン(B) ✓ 変数(m) ✓ 結果(R) 	▶ 1999年(6) ► X軸反転(0) ► X軸反転(0)	~117H
「X軸固定(F) -0.05 「Y軸固定(F) -1.5e-0	T <u>©</u> : [0.5 06 T <u>©</u> : [5e-006		をデータポイントに固定 — ock 🕞 Free
■ ×軸タイトル①	単1	±; ── ┌ • •	流密度(1)
「 /軸タイトル①)	単1	立: 電椅	2面積(<u>0</u>) 1
(軸スケール(<u>S</u>)、 <mark>1</mark>		1 E	vs 参照電極(v)
セグメント: <u>1 To</u> :	1	参照	電極(c) As/AsCl
ッダー(d): 0.5mM K3Fe() 注(N):	CN)6 in 0.4M KNO3		

次のオプションはグラフオプションを選択できます。:

スクリーン

ヘッダー、軸、ベースライン、パラメータ、結果をスクリーン上で選択的に ON、OFF できます。 ヘッダーはプロットのトップの見出しです。ヘッダーテキストはヘッダーテキストエリアに 入力できます。

ベースラインは視覚的にピークまたは波形を定義するために引かれます。

スクリーンオプションはプリンターオプションとは無関係です。

プリンター

ヘッダー、軸、ベースライン、パラメータ、結果をスクリーン上で選択的に ON、OFF できます。 プリンターオプションはスクリーンオプションとは無関係です。

軸、反転

選択的にXYグリッド、XY反転のON、OFFができます。

XY反転はXY軸の極性を変更できます。これは一時的な変更に使用します。XY軸極性を デフォルトに変更したい場合、セットアップメニューのシステムコマンドを使用します。

XY 軸固定

項目をチェックすることによりXY軸を固定で、固定スケールを入力できます。X、Y軸は別々 に制御できます。 XY軸固定がチェックされませんと、XYスケールは現在使用された値を示します。

XY 軸の整数値の印を付けるために、XY 軸は入力した正確なスケールで固定できないこと があります。

XYタイトル

各電気化学テクニックの場合、システムはデフォルトのXY軸タイトルを与えます。それを カスタマイズする場合、項目をチェックし、タイトルを入力します。

単位

カスタマイズした X Y 軸タイトルの単位または次元を入力できます。

XYスケール

XY スケールの変更によりプロットサイズを変更できます。デフォルト XY スケールはサイズで1です。

これはパブリケーションのために必要なサイズにプロットしたい時、またはワープロに図をペーストする時、有効です。

データ

プロットしたいデータを選択します。テクニックにより、選択は変ります。現在のデータプ ロットコマンドを参照して下さい。

電流密度

この項目がチェックされた時、電流密度が表示されます。

電極面積

電極面積は電流密度を計算するために使用されます。

電圧 対 参照電極

デフォルトにより、電位軸タイトルは Potential / V です。この項目がチェックされている場合、実験に使用される参照電極のタイプが電位軸タイトルに添付されます。例えば、電位軸は Potential / V vs SCE となります。参照電極:プロンプットした後、編集ボックスの参照電極を入力します。

ヘッダー

これはヘッダーテキスト編集ボックスです。ヘッダーをここに入力します。プロットのトッ プにヘッダーを表示する場合、スクリーンまたはプリンターオプションのヘッダーチェックボッ クスをチェックします。

注

これは注テキスト編集ボックスです。注をここに入力します。注はプロットに表示できませんが、データ情報として表示され、データファイルに保存されます。実験のコメント、実験の条件、 目的を後で思い出すために利用します。

6.14 色、説明コマンド

このコマンドを使用すると、グラフプロットの色、説明が選択できます。

バックグラウンド、軸、グリッド、データ曲線の色の変更ができます。データ曲線、グリッドの説明もまた変更できます。

色、説明はプログラムの終了時に保存され、プログラムを起動する時に読込みます。 テキストの色を変更する場合、フォントコマンドを使用して下さい。

下記図は色、説明コマンドのダイアログボックスです:

色選択					>
	色	說明	サイズ	間隔	ок
曲線 0:	(Z .	Solid Line	- 1 -	1 🗸	キャンセル
曲線 1: [変更	Solid Line	¥ 1 ¥	1 👻	
曲線 2:	変更	Solid Line	• 1 •	1 +	
曲線 3:	変更	Solid Line	• 1 •	1	7771170
曲線 4:	変更	Solid Line	¥ 1 ¥	1 -	モノクロ(M)
曲線 5:	変更	Solid Line	• 1 •	1 -	
曲線 6: 👖	変更	Solid Line	• 1 •	1	
曲線 7:	変更	Solid Line	• 1 •	1 👻	
曲線 8:	変更	Solid Line	• 1 •	1 -	
曲線 9:	変更	Solid Line	• 1 •	1 🗸	
グリッド	変更	Point	•		
	色		色	厚さ	
背景色 [変更	★ 丫軸:	変更 変更	1 👻	
カラーバー	Two Color	-			

次のオプションはプロットの色、説明を選択できます。:

曲線#

曲線0は最近のデータを表します。曲線1~9は多重プロット用です。多重された曲線はこ こで定義された順番の色が使用されます。

色

データ曲線、グリッド、軸、バックグラウンドの色を選択できます。色を変更する場合、変 更プッシュボタンを押します。システムは色ダイアログボックスを表示し、色が選択できます。 色ダイアログボックスについての詳細を知りたい場合、ウィンドウズユーザーズマニュアルを 参照して下さい。

テキストの色を変更する場合、フォントコマンドを使用して下さい。

説明

データ曲線、グリッド説明を選択できます。説明はライン、ポイント、○、他のパターンに なります。

曲線またはグリッドの説明用にポイントが選択された時、あるプリンターまたはプロッター では表示されないかもしれません。例えば、HP社レザージェット IV は HPGL モードでドット を印字しませんが、ラスターモードではドットを印字します。プリンターの最適な組み合せに ついてはプリンターのマニュアルを参照して下さい。 サイズ

説明のサイズまたはラインの厚みを指定できます。

間隔

プロットのデータ密度を変更できます。オリジナルデータ密度は1です。大きな間隔はデー タポイント密度を低下します。これは多重プロットと異なる説明を使用した時、有効です。 デフォルト

このプッシュボタンを押しますと、全ての色、説明をシステムのデフォルトにリセットします。

6.15 フォントコマンド

このコマンドを使用すると、プロットで使用されたテキストのフォント(スタイル、サイズ、 色)を選択できます。

プリンターのY軸タイトル回転角度を選択できます。

フォントはプログラムを終了した時、保存されます。プログラムを再スタートした時、再読 込みされます。

下記図はフォント選択ダイアログボックスです:

項目	フォント	スタイル	サイズ 色		OK
曲ラベル:	Arial Narrow	Regular	TT	変更	キャンセル
曲タイトル:	Times New Roman	Bold	16	変更	ヘルプ田
ヽッダー:	Arial	Bold	12	変更	デフォルト(D)
2数:	Arial	Regular		変更	
吉果:	Arial	Regular	- IS- III	変更	
友値:	Courier New	Bold	12	変更	

フォント、スタイル、サイズ、テキストの色を変更する場合、変更プッシュボタンを押します。 Y軸は下からトップまで移動できますが、プリンターにより文字の回転角度を定義できます。 例えば、HP社レーザージェット IV は希望の回転を 90°として定義できますが、IBM、Lexmark 4039 12R は 270°として定義されます。Y軸タイトルが上から下に変わった場合、選択を 変更します。

システムはフォントダイアログボックスを表示し、フォントを選択できます。フォントについて更に詳細を知りたい場合、ウィンドウズユーザーマニュアルを参照して下さい。

デフォルトプッシュボタンを押しますと、全てのフォントはシステムのデフォルトにリセッ トされます。

6.16 クリップボードへのコピーコマンド

このコマンドを使用しますと、プロットをクリップボードにコピーできます。そのデータを ワープロ等にペーストできます。

このコマンドは測定またはデジタルシュミレーションを実行中にも働きます。

7.1 スムージングコマンド

このコマンドを使用すると、現在のデータのスムージングを行います。 スムージングのダイアログボックスを示します。:

メソード選択	ОК
● 最小二重法スムージング(5)	キャンセル
C フーリエ変換スムーシンク(□)	ヘルプ(H)

スムージングを行う場合、OK プッシュボタンをクリックします。

次のオプションはスムージングのパラメータとモードを選択できます。:

モードの選択

スムージングモードの選択:最小二乗法またはフーリェ変換スムージング

最小二乗法

Savitzky、Golay アルゴリズムはこのテクニックで使用されます。5~49 までの奇数ポイン トはスムージングで使用されます。ポイント数が多いと、スムージング効果は良くなりますが、 歪みも大きくなります。

Savitzky、Golay アルゴリズムの詳細については、"Smoothing and Differentiation of Data by Simplified Least Squares Procedures", Anal. Chem., 36, 1627-1639 (1964) を参照して下さい。

FT カットオフ (1/s or 1/V)

フィルターカットオフ周波数を指定します。タイムベース実験の場合、CA, CC, TB..., を含み、 1/s または Hz は単位です。ボルタンメトリーの場合、単位は 1/V、物理的な意味は1 ボルトの ポテンシャル範囲でシグナルサイクルが何回許容されるかです。カットオフが低いと、スムー ジング効果は良好ですが、歪みを生じます。

フーリェ変換スムージングは D.E. Smith 等により提案された方法によって行われます。アル ゴリズムの詳細については "Some Observations on Digital Smoothing of Electroanalytical Data Based on the Fourier Transformation", Anal. Chem., 45, 277-284 (1973) を参照して下さい。

一般的に、フーリェ変換スムージングは非常に効果的です。シグナルバンドはノイズバンド と分離される場合、歪みも小さくなります。一方この方法は相対的に時間がかかります。

測定後のスムージング

このボックスがチェックされると、測定後、自動的にスムージングされます。TAFEL, BE, IMP のようなテクニックではスムージングはできません。 このオプションはコントロールメ ニュー測定状況コマンドから ON、OFF できます。

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されま す。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジ ナルデータは再度現れます。

7.2 微分コマンド

このコマンドを使用すると、現在のデータを微分します。

ー次微分すると Y 軸は Y 単位 /X 単位となります。例えば、ボルタンメトリーの場合、Y 軸 は A/V となり、i-t の場合、Y 軸は A/S となります。新しい単位は明確に表示されませんので、 注意してください。

システムは微分ダイアログボックスを表示します。

如分次数(<u>D</u>)	ок
st Order Derivative	キャンセル
St Urder Derivative	<u> へルプ면</u>)

微分を行う場合、OK プッシュボタンをクリックします。 次のオプションは微分の次数、パラメータを選択できます:

次数の選択

微分の次数、一次、二次、三次、四次、または五次を選択します。

最小二乗法

Savitzky、Golay アルゴリズムで微分を行う時に使用されます。5~49 までのポイントの奇数が使用されます。微分は高周波数ノイズを増幅する傾向がありますので、相対的に大きな値が考慮されます。ポイント数が多いと、微分データのノイズは少なくなりますが、歪みは大きくなります。

Savitzky、Golay アルゴリズムの詳細については "Smoothing and Differentiation of Data by Simplified Least Squares Procedures", <u>Anal. Chem.</u>, 36, 1627-1639 (1964) を参照して下さい。

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されま す。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジ ナルデータは再度現れます。

7.3 積分コマンド

このコマンドを使用すると、現在のデータを積分します。

積分すると Y 軸は Y 単位 x X 単位となります。例えば、ボルタンメトリーの場合、Y 軸は AV となり、i-t の場合、Y 軸は AS(クーロン)となります。新しい単位は明確に表示されませ んので、注意してください。

システムは積分ダイアログボックスを表示します。

積分を行う場合、OK プッシュボタンをクリックします。 次のオプションは積分のパラメータの選択を行います。:

現在のデータの無効

このボックスをチェックしますと、現在のデータはスムージングされたデータに交換されま す。さもなければ、スムージングデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューから現在のデータのプロットコマンドを実行した時、オリジ ナルデータは再度現れます。

7.4 半積分、半微分コマンド

このコマンドを使用すると、現在のデータを半積分または半微分できます。

半微分、半積分は有効です。半微分を使用すると拡散のピークをガウスピークに変換でき、 解像度の向上と測定が容易になります。拡散ピークをシクモイド波形に変換し、時間一独立し た定常状態がプラトーになります。電流一電圧半対数分析を含むポーラログラフィック理論デー タ解釈に使用できます。

システムは半積分、半微分ダイアログボックスを表示します。

(位窓	ОК
E <u>F</u> rom (V) 📱	キャンセル
E <u>T</u> o (V)	ヘルプ(H)

半積分または半微分を行う場合、OK プッシュボタンをクリックします。 次のオプションは畳み込みのパラメータを選択できます。:

次数の選択

半積分または半微分の一方を選択します。

現在のデータを無効

このボックスをチェックすると、現在のデータは畳み込みされたデータに交換されます。さ もなければ、畳み込みされたデータは表示されますが、現在のデータを無効にしません。この 場合、グラフィックメニューの現在のデータプロットコマンドが実行され、オリジナルデータ が再度現れます。

7.5 書き込みコマンド

このコマンドを使用すると、現在のデータに更にデータポイントを挿入できます。 システムは書き込みダイアログボックスを表示します:

書き込み	
データ挿入(型)	ОК
▼ 現在のデータを無効にする(2)	キャンセル
	ヘルプ田)

書き込みを行う場合、OK プッシュボタンをクリックします。 次のオプションは書き込みパラメータを選択できます:

データ挿入密度

数値を大きくすると、最終データ密度は高くなります。データポイント数がメモリーサイズ を超えた時、警告が表れ、コマンドは終了します。データ挿入密度は2の指数のみです。フーリェ 変換はこの場合、使用されます。

現在のデータ無効

このボックスをチェックされますと、現在のデータは書き込みデータに交換されます。さも なければ、書き込みデータは表示されますが、現在のデータを無効にしません。この場合、グ ラフィックメニューの現在のデータプロットコマンドを実行した時、オリジナルデータが再度 現れます。

7.6 ベースラインフィッティング&減算コマンド

このコマンドを使用しますと、ベースラインフィッティングと現在のデータからフィッティング曲線を差し引きます。

ベースラインフィッティング&減算を行う場合、2つのピークの足もとの電位を特定する必要があります。また、アルゴリズムとフィッティング次数を指定する必要があります。ベース ラインフィッティング&減算は限定したピークのみに働きます。全てのテクニックには働きま せん。

ベースラインフィッティング&減算ダイアログボックスを表示します:

1200000				OK
From	18		10	キャンセル
From	0	То	0	へルプ(日)
From	0	То	0	
From	0	То	0	ベースライン参
From	0	То	0	差公券昭
- スライ	レフィッティ	ングアルゴ	レズム <u>次</u> 数	2.7.9.4
ー スライ :- スライ (・ 直:	レフィッティ ンフィッティ ンフィッティ 交最小二乗	ングアルゴ ング次数: i法 C	リズム <u>次</u> 数 「6 ・ 最小二乗法	<u> </u>
ースライ ニスライ (*) 直:	レフィッティ ンフィッティ ンフィッティ 交最小二乗	ングアルゴ ング次数: i法 (リズム <u>次</u> 数 「5 「最小二乗法	

CV データのようにデータセグメントが多数ある場合、グラフィックスメニューのグラフオ プションコマンドを用いて操作できるデータ組を選択できます。

次のオプションはフィッティングパラメータを選択でき、データの各種条件も保存できます。 ピーク範囲

ベースラインをフィットする時、ピークのデータポイントは避けなければなりません。2つ のピーク範囲を指定する必要があります。ベースラインフィッテングが理想的でない場合、ピー ク範囲の調整または多項式の次数の調整が必要かもしれません。

ピークが幾つかある場合、ピークの数に応じてピーク範囲を設定します。ベースラインフィッ ティングに使用しない全体の電位または時間範囲を指定します。最大5ピーク範囲まで設定で きます。

ベースラインフィッティングアルゴリズム次数

フィッティングのアルゴリズムと次数を指定する必要があります。フィッティングには2つ のアルゴリズムがあります。直交最小二乗法と最小二乗法があります。2つとも多項式フィッ ティングに基づいています。多項式の次数はベースラインの波形に関係します。直線の場合は 1次次数, aX+bです。二次次数フィッティングでは aX²+bX+cとなります。最適なフィッティ ングを行いたい場合、フィッティングアルゴリズムを調整し、ピーク電位範囲の調整が必要です。 オリジナルデータを無視するための保存

OK ボタンをクリックする時、何もせずに選択した場合、スクリーンにはオリジナルデータ とフィットしたベースラインが表示されます。オリジナルデータは変更されません。差分を選 択した場合、オリジナルデータは差分データに交換されます。差分データはオリジナルデータ からベースラインデータを引き算して得られます。ベースラインを選択した場合、フィットしたベースラインデータが保存されます。

ベースライン参照

このボタンを押しますと、フィッテング結果を評価するためにオリジナルデータとフィット したベースラインを参照できます。フィッティングの結果を確認する上で重要な操作です。ピー クの定義ラインが視覚を妨げるようであれば、グラフィックスメニューのグラフオプションの スクリーンベースラインを OFF にします。

オリジナルデータは変更されません。グラフィックスメニューから現在のデータのプロット を呼び出せば、オリジナルデータが表れます。

差分参照

このボタンを押しますと、フィッテング結果を評価するためにオリジナルデータとフィットしたベースラインを表示します。これはフィッティングの結果を評価する上で役に立ちます。

オリジナルデータは変更されません。グラフィックスメニューから現在のデータのプロット を呼び出せば、オリジナルデータが表れます。

7.7 ベースライン補正コマンド

このコマンドを使用しますと、現在のデータを視覚的にベースラインを補正します。ベース ラインの勾配の補償、曲線の dc レベルのシフトができます。

ベースラインの補正コマンドは一度のみ使用できます。一回以上ベースラインを補償、シフ トさせる場合、繰返しこのコマンドを実行します。

システムはベースライン補正ダイアログボックスを表示します:

ベースライン補正	×
	OK
▼ 現在のデータを無視(0)	キャンセル
	ヘルプ(円)

ベースライン補正する場合、最初に OK プッシュボタンをクリックします。マウスカー ソルは上矢印に変わります。

ベースライン勾配を補償する場合、開始点でマウスボタンを押し、マウスをドラッグし、 ベースラインを形成するポイントに広げます。マウスボタンを離しますと、このラインは データから差し引かれます。X軸の補償範囲はラインが引かれる範囲です。

dc レベルをシフトする場合、水平ラインを引くためにマウスを使用します。このラインが曲線のゼロラインとなります。dc レベルのシフトは全体の曲線に適用されます。X 軸範囲をカバーするラインを引く必要はありません。

CV データのように一つ以上のセグメントのデータが得られる場合、グラフィックメ ニューのグラフオプションコマンドを使用して、操作できるデータセットを選択できます。

ベースライン補正コマンドは一度だけ起動できます。一回以上ベースラインシフトま たは補償を行う場合、繰返しこのコマンドを使用します。

次のオプションは現在のデータがベースライン補正データに交換されたかどうかを調 べることができます。

現在のデータを無効

このボックスをチェックすると、現在のデータはベースライン補正データに交換され ます。さもなければ、ベースライン補正データは表示されますが、現在のデータを無効に しません。この場合、グラフィックメニューの現在のデータプロットコマンドが起動され た時、オリジナルデータが再表示されます。

153

7.8 データポイント除去コマンド

このコマンドを使用すると、現在のデータの中で必要ないデータポイントを除去できます。 最初または最後にデータポイントを除去できます。

システムはデータポイント除去ダイアログボックスを表示します:

ータポイント除去	
最初のチータポイント除去(8) 0	ОК
最終のデータポイント除去(E) 🔋	キャンセル
▼ 現在のデータを無視(0)	ヘルプ(円)

必要のないデータポイントを除去する場合、OK プッシュボタンをクリックします。 次のオプションはデータポイント除去のパラメータの選択ができます。:

最初のデータポイントの除去

最初にデータのポイントを除去する場合、チェックボックスはチェックしなければなりません。編集ボックスで除去するデータポイント数を入力します。チェックボックスが未チェックの場合、または除去するデータポイントの数がゼロの場合、本項目は起動しません。

最終データポイントの除去

データの最終点でのポイントを除去する場合、編集ボックスで、チェックボックスはチェックしなければなりません。編集ボックスで除去するデータポイント数を入力します。チェック ボックスが未チェックの場合、または除去するデータポイントの数がゼロの場合、本項目は起 動しません。

現在のデータを無効

このボックスをチェックすると、現在のデータはデータポイント除去後、新しいデータに交換されます。さもなければ新しいデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナ ルデータが再表示されます。

7.9 データポイント修正コマンド

このコマンドは、現在アクティブデータのデータポイントを画像的に変更するコマンドです。 不正な水銀滴等のためにデータポイントの修正が行えます。

システムはデータポイント修正ダイアログボックスを表示します:

×
ок
キャンセル
ヘルプモリ

データポイントを修正する場合、最初にOK プッシュボタンをクリックします。マウスカー ソルは上矢印カーソルに変わります。

データ表示範囲内でマウスカーソルを移動する時、十字カーソルはマウスカーソルのX 軸部 分に相当するデータポイントに表れます。変更したいデータポイントを選択するために水平に マウスを移動します。十字カーソールが選択したポイントに表れた時、マウスボタンを押します。 データポイントを移動したい方向に上下にマウスをドラッグします。十字カーソルはそれに相 当して上下に移動します。十字カーソルが変更したいデータポイントの位置に来た時、マウス ボタンを離します。古いポイントは消去され、新しいポイントが新しい位置に表れます。

次のオプションは修正したいデータセットの選択、現在アクティブデータを修正したデータ で上書きが行えます。

データセット

変更したいデータセットを選択します。使用する電気化学テクニックによって選択します。

現在のデータを無効

このボックスをチェックすると、現在のデータはデータポイント修正後、新しいデータに交換されます。さもなければ新しいデータは表示されますが、現在のデータを無効にしません。 この場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナ ルデータが再表示されます。

7.10 バックグラウンド減算コマンド

このコマンドはデータセット2組の差をとります。最初にブランクの溶液を測定し、データファイルを保存します。次に、サンプルを測定します。バックグラウンド減算を行うためにこのコマンドを使用します。

バックグラウンド減算を行う場合、バックグラウンドデータは同じ実験タイプ、同じXデー タ配列にしなければなりません。さもなければ、エラーメッセージが発生し、コマンドが終了 します。

システムはバックグラウンド減算ダイアログボックスを表示し、現在のデータから引算をす るバックグラウンドデータファイルを選択できます。

ファイルの場所型:	🔂 Data			
99 Acv1.bin 99 Acv2.bin 99 Acv3.bin 99 Be1.bin 99 Ca1.bin 99 Ca2.bin	Ca3.bin Cc1.bin Cc2.bin Cc2.bin Cp1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dpa1.bin	Dpa2.bin Dpv1.bin Dpv2.bin Dpv3.bin Dpv3.bin Imp1.bin Imp2.bin	
< 7ァイル名(N):	Ov1.bin			• (@)

次のオプションは選択したいファイルを指定できます。:

ファイル名

ファイル名を選択します。拡張子を入力する必要はありません。システムは自動的にファ イル名に拡張子を付けます。

ファイルタイプの一覧

ファイルタイプを選択します。 "bin"(バイナリーデータファイル)が利用できます。 ドライブ

ファイルを保存するドライブを選択します。

ディレクトリー

ファイルを保存するディレクトリーを選択します。

7.11 シグナル平均コマンド

このコマンドを使用すると現在のデータ、ディスクデータファイルをシグナル平均します。 現在のデータは常に加わります。いくつかのデータセットは一緒に加わり、データセットの数 で分割されます。データセットが現在のデータと X 配列が異なる場合、エラーメッセージが発 生し、このデータセットは無視されます。

システムはシグナル平均ダイアログボックスを表示し、シグナル平均用データファイルを選 択できます。

ファイルの場所の:	🔄 Data		- - 	
99 Acv1.bin 99 Acv2.bin 99 Be1.bin 99 Ca1.bin 99 Ca2.bin	Ca3.bin Cc1.bin Cc2.bin Cc2.bin Cc1.bin Cv1.bin	Cv3.bin Cv4.bin Ddpa1.bin Ddpa2.bin Dnpv.bin Dna1.bin	Dpa2.bin Dpv1.bin Dpv2.bin Dpv3.bin Imp1.bin Imp2.bin	
ヽ ファイル名(N): ファイルの種類(T):	Ov2.bin Data Files (*.bin)		₩ **	ビー K(Q) シセル

次のオプションは選択したいファイルを指定できます。:

ファイル名

ファイル名を選択します。拡張子を入力する必要はありません。システムは自動的にファイル 名に拡張子を付けます。多数のファイルを選択する場合、選択したいファイル名にマウスを移 動し、Ctrl キーを押しながらマウスの左ボタンをクリックします。

ファイルタイプの一覧

ファイルタイプを選択します。 "bin"(バイナリーデータファイル)が利用できます。 ドライブ

ファイルを保存するドライブを選択します。

ディレクトリー

ファイルを保存するディレクトリーを選択します。

7.12 数学操作コマンド

このコマンドを使用すると、現在のデータを数学処理できます。X、Y配列上で作業できます。 許容された操作は加算、減算、乗算、除算、自然対数、対数、二乗、平方根、逆数です。 システムは数学操作ダイアログボックスを表示します:

操作の選択	データ選択 ―――	ОК
● 加算(公)	C ×データ配列⊙	キャンセル
○ 減算(S)	④ Yデータ配列(Y)	
○ 乗算(M)		~~///
€ 除算())		
⑥ 自然対数(E)	加黄硕: 10	
C 対数(L)	除算(6) 0	
C 二乗(q)	- 棄算(<u>u</u>): ┃	
○ 平方根(t)	除算(): 1	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

数学操作を行なう場合、OK プッシュボタンをクリックします。

次のオプションは操作のタイプ、データ配列を選択できます。:

操作の選択

データを適用したい操作の選択を行ないます。加算、減算、乗算、除算が選択された場合、操 作方法を決めなければなりません。

データの選択

操作するために X データまたは Y データ配列のどちらかを選択できます。

現在のデータを無効

このボックスをチェックすると、現在のデータは数学操作されたデータに交換されます。さ もなければ、数学操作されたデータは表示されますが、現在のデータを無効にしません。この 場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデー タが再表示されます。

7.13 フーリェスペクトルコマンド

このコマンドを使用して、現在のデータのフーリェスペクトルを得ることができます。 システムはフーリェスペトクルダイアログボックスを表示します:

× スケール	イスケール ――	ОК
• <u>nth comp</u>	● 直線(L)	キャンセル
C 1 / sec	C 対数(c)	<u>~ルプ⊕</u>
$C \rightarrow V$	_	

フーリェスペトクルを作る場合、OK プッシュボタンをクリックします。

次のオプションはフーリェスペトクルを作るためにパラメータの選択ができます。:

Xスケール

フーリェスペトクルの X データ配列は n 成分、1/s スケールまたは 1/V スケールになります。 n 成分は汎用のケースです。全てのテクニックにて利用できます。その物理的な意味は実験パ ラメータに応じて見出されます。1/s、1/V は明らかに物理的な意味があります。タイムベース 実験の場合、1/s が使用されます、そして 1/V は有効ではありません。ボルタンメトリー実験 の場合、1/V が使用されます。1/s は有効ではありません。サイクリックボルタンメトリー、リ ニアスィープボルタンメトリーでは 1/s、1/V 両方が使用できます。

Yスケール

Y データ配列はフーリェ係数です。リニアスケールまたは対数スケールのどちらかを選択します。

現在のデータの無効

このボックスをチェックすると、現在のデータはフーリェスペクトルデータに交換されます。 さもなければ、フーリェスペクトルは表示されますが、現在のデータを無効にしません。この 場合、グラフィックメニューの現在のデータプロットコマンドが起動された時、オリジナルデー タが再表示されます。

8.1 キャリブレーション曲線コマンド

このコマンドはキャリブレーション曲線を作成するコマンドです。システムはキャリブレーション曲線ダイアログボックスを表示します。

	濃度	ピーク高さ			ок
マンダード	1 00	2.391 e-007			キャンセル
マンダード	200	4.782e-007			
タンダード	300	7.023e-007	スローブ:	0	
タンダード	400	9.272e-007	切片:	a	読込み風
タンダード	500	1.154e-006	係数:	0	保存(S)
タンダード	0	0			=
知物質	0	5.375e-007			
軸タイトル:	Concentra	ation	×軸単位(U)	ppb	
曲タイトル::	Peak Curr	ent	Y軸単位(t)	A	
ッダー	Ou in wate	r			j.
(音)(N)					-

次のオプションはキャリブレーション曲線計算またはプロット用のデータ入力が行えます。

スタンダード#

スタンダード溶液から得られるピーク高さ/電流、濃度を入力します。

未知物質

未知物質濃度計算するために未知物質のピーク高さを入力します。

X 軸タイトル

プロットする X 軸タイトル (濃度)を入力します。

X 軸単位

プロットする X 軸単位または次元 (ppm, または M) を入力する

Y軸タイトル

プロットする Y 軸タイトル (ピーク電流)を入力します。

Y軸単位

プロットする信号単位または次元(A)を入力する。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットの上部 にヘッダーを表示させる場合、グラフオプション コマンドを使用して、ヘッダーチェックボッ クスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示されませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータの条件、目的について参照できます。

読込み

保存したデータを読み込むためのコマンドです。

保存

データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒 に保存されます。

計算

キャリブレーション曲線のスロープ、切片、係数を計算するためのコマンドです。未知物質 のピーク高さを入力すると、未知物質濃度も算出されます。

プロット

キャリブレーション曲線をプロットするためのコマンドです。

プロットはデータ範囲に応じて自動的にスケーリングされます。スケールを固定する場合、 グラフオプション コマンドを使用して下さい。

操作法

このコマンドを用いると、キャ リブレーション曲線(検量線) を作成することができます。 各濃度で測定した際のピーク 電流値をダイアログボックス 内に入力してください。入力 後計算をクリックし未知濃度 のピーク高さを入力すると、 濃度が自動的に計算されます。

	濃度	ビーク高さ		OK
タンダード	100	2.391e-007		キャンセル
タンダード	200	4.782e-007		
タンダード	300	7.023e-007	スローブ: 0	~///7@)
タンダード	400	9.272e-007	切片: 0	読込み(R)
タンダード	500	1.154e-006	係数: 0	保存(S)
タンダード	0	0		
知物質	0	5.375e-007		17. A (C)
軸タイトル:	Concentra	ation	X軸単位(U) ppb	ブロット(P)
軸タイトル::	Peak Curr	ent	Y軸単位(t) A	-
ッダー	Ou in wate	r		

プロットをクリックすると検量線を作成することができます。検量線の傾き、切片、相関係数、 未知濃度のサンプル濃度が右上に表示されます。検量線で得られた傾きと切片は他のコマンド でも使用しますので必要な場合は記録してください。

検量線

8.2 スタンダード添加コマンド

このコマンドを用いてスタンダード添加法による未知物質濃度を算出するためのコマ ンドです。システムはスタンダード添加ダイアロッグボックス を表示します。

	濃度	ビーク高さ			OK
F:知物質:	0	3.425e-007			キャンセル
参加 1:	100	5.629e-007		-	-
6加 2:	200	7.961 e-007	20-7:	0	
6 ho 3:	300	1.033e-006	係數:	0	読込み(<u>R</u>)
6加4:	0	O			保存(<u>S</u>)
X軸タイトル:	Concentration		X軸単位(U)、 ppb	ppb	
軸タイトル:	Peak curre	ent	Y軸単位(t)	A	
、ッダー	Pb in wate	r			
++00	[0			

スタンダード添加法の場合、最初に未知物質を測定し、ピーク高さを記録します。次にスタ ンダード溶液を添加します。添加を行いながら、ピーク高さを再度測定します。通常、添加量 はサンプル組成を維持するために総容量以下にしなければなりません。増加濃度は未知物質と 比較します。

次のオプションは未知物質のキャリブレーション曲線計算またはプロット用のデータ入力が 行えます。

未知濃度

未知物質濃度計算用のピーク高さを入力します。

添加#

スタンダード溶液を添加した後、濃度とピーク高さ/電流を入力します。

X 軸タイトル

プロットする X 軸タイトル(濃度)を入力します。

X 軸単位

プロットする X 軸単位または次元 (ppm, または M) を入力します。

Y 軸タイトル

プロットする Y 軸タイトル (ピーク電流)を入力します。

Y 軸単位

プロットする信号単位または次元(A)を入力します。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上 部にヘッダーを表示させる場合、グラフオプションコマンドを使用して、ヘッダーチェックボッ クスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざ れませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータ の条件、目的について参照できます。 読込み

保存したデータを読み込むためのコマンドです。

保存

データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒 に保存されます。

計算

キャリブレーション曲線のスロープ、切片、係数を計算するためのコマンドです。未知物質 のピーク高さが得られた場合、未知物質濃度も算出されます。

プロット

キャリブレーション曲線をプロットするためのコマンドです。

プロットはデータ範囲に応じて自動的にスケーリングされます。スケールを固定する場合、グ ラフオプション コマンドを使用して下さい。

操作法

このコマンドを用いるとスタンダード 添加法により、未知濃度のサンプル濃 度を計算できます。

まずはじめに未知濃度サンプルのピー ク高さを記録してください。その後、 標準溶液を数回添加し、その際のピー ク高さを記録してください。添加する 標準溶液の量はマトリックス効果など

	濃度	ビーク高さ			OK
未知物質:	0	3.425e-007			キャンセル
新加1:	100	5.629e-007		-	-
赤加 2:	200	7.961e-007	Xu - 7:	0	~1,700
赤加 3:	300	1.033e-006	係數:	10	読込み(<u>R</u>)
赤加 4:	0	0			
X軸タイトル:	Concentration		X軸単位(U)、 ppb	ppb	
軸タイトル:	Peak curre	ent	Y軸単位(t)	A	
ヘッダー	Pb in wate	r			
主意(N);	-	16			

を避けるためできるだけ少量にして下さい。

未知濃度のサンプルのピーク高さと、添加後のピーク高さを入力後、計算をクリックすると自動的に未知濃度が計算されます。プロットをクリックすると、標準添加曲線を描くことができます。

プロットをクリックすると、標準添加曲線を 描くことができます。スロープ、相関係数およ び濃度が右上に表示されます。

8.3 データファイルレポートコマンド

このコマンドを用いて保存したデータファイル用のレポートを作成します。 システムはデータファイルレポートダイアログボックス を表示します。

	(8)	1 <u>E</u> 1	種口	輕 4	OK,
di Sic	Q.	Pb			キャンセル
Ep From (V):	-0.2	-0.15	0	a	~16760
EP TO CV2	-0.35	-0.92	a	a	1012 2 (2)
20-7	2,279 e-9	22154-9	0	0	8186400
an:	1.652+-6	3.8258-6	a	0	(銀行(2)
テータタイプ 間の数 造成単位(注 しポートファィ	Ories 2 Jack	ul <u>-</u>	レポートテータ	er.	
0 <u>1</u> 0-200	Mater Water	Batch #16			

次のオプションはキャリブレーション曲線のピークポテンシャル窓、スロープ、切片を入力 し、レポート用のデータファイルを選択できます。

成分

調べる成分名を入力します。最大4成分探索、レポートできます。

Ep From and Ep To

Ep From、Ep To のピークポテンシャル範囲を入力します。プログラムはピークを探索する時、 特定範囲の第一のピークが選択されます。異なる成分の場合、別の値を入力しなければなりま せん。

勾配

成分のキャリブレーション曲線の勾配を入力します。成分濃度を算出するのに使用されます。 各成分の独自の勾配を有します。濃度レポートが選択され、勾配がゼロの場合、警告が表れます。 切片

成分のキャリブレーション曲線の切片を入力します。成分濃度を算出するのに使用されます。 各成分の独自の切片を有します。

ピーク波形

データの特性に応じてピーク波形を選択できます。ピーク波形はガウス、拡散またはシグモ イド波形です。

データ形式

濃度をレポートするためにオリジナルデータ、半微分、一次微分を選択できます。

種の数

データファイルレポート用に種の数を入力します。

濃度単位

濃度単位、または次元 (ppm または M) を入力します。

レポートファイル名

レポートテキストファイルを保存する場合、レポートファイル名を入力します。ファイル名 が存在する場合、無効の警告が表れます。ファイル名が入力されませんと、レポートは保存さ れません。

レポートデータ形式

濃度またはピーク電流をレポートにします。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上 部にヘッダーを表示させる場合、グラフオプションコマンドを使用して、ヘッダーチェックボッ クスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざ れませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータ の条件、目的について参照できます。

読込み

保存したデータを読み込むためのコマンドです。

保存

データ保存するためのコマンドです。 XY タイトル、単位、ヘッダー、注意がデー タと一緒に保存されます。

レポート

このコマンドを用いてデータファイルレポートを作成します。

操作法

このコマンドを用いると、ボルタモグラム の指定した電位範囲内にあるサンプルピー クを自動的に検出し、それらのピーク高さ (濃度)を表示します。レポートを行う前に、 検量線からスロープと切片を出しておく必 要があります。

ピークがある電位範囲を指定して下さい。異なった物質についてそれぞれレポートを行う場合 には、それぞれの電位範囲と、傾きおよび切片(検量線から)を入力して下さい。

AとBの電位範囲を下記のように入力します。

ピーク形状は通常 Diffusive を、データは Original を選択してください。微小電極の場合、ピーク形状は Sygmoidal、容量電流の大きな電極は Gausian を選択して下さい。

レポートをクリックしレポートを行いたいデータを選択してください。分析レポートとして下 図のように各ピークの濃度(電流値)が自動的に計算されます。

	081	1 <u>1</u>	植口	輕 4	OK,
nis):	Q.	Pb			キャンセル
Ep From (V):	-0.2	-0.15	0	a	AB700
Ep To (V)	-0.35	-0.52	a	0	18:13 (2)
スローブ	2.279e-9	22154-9	0	0	8122.04-040
61.Hr:	1.652a-6	3.825e-6	0	0	操存(8)
ビーク形状 テー39イブ 厚の数 逸史単位(E) しパートファ・	Guoz Orga 2 (Ju jani (レポートテータ (* 生産	ಕನ ೧ ಕನ	
0.00-1240.0	Water Water	Batch #16			

			II. OK
Description Personnecks and	1.59711-024	1.51826-924	123
sider 1 = 2 2000009 etricogit = 1,9009009 Sign 1 = 20000009 etricogit 2 = 1,9008009 Doroentration Unit gat			

8.4 時間依存コマンド

このコマンドを用いますと、保存データファイルからピークの時間依存または濃度のレポー トまたはプロットを作成します。

このコマンドは保存データファイルからデータを読込み、ピークを探索します。ピーク高さ または濃度は時間依存レポート用に使用されます。全ての有効データファイル(特定のピーク を含む)は実験測定時間に応じて保存されます。最初に開始時間が割当てられ、残りの実験時 間は開始時間を差し引いて得られます。

システムは時間依存ダイアログボックスを表示します。:

p From (V)	-0.2		OK
p To (V)	-0.35		キャンセル
ペローブ:	2.279e-9		ヘルプ(H)
]片:	1.652e-8	(
:-ク形状: 	Gausian 👻		
	Uriginal 💌		レポート()
軸タイトル:	Concentration	Y軸単位(セ) ppb	ブロット
ッダー	Water Water Batch	1 #16	

次のオプションはキャリブレーション曲線のピークポテンシャル窓、スロープ、切片を入力し、 時間依存レポートまたはプロット用のデータファイルを選択できます。

成分

調べる成分名を入力します。最大4成分探索、レポートできます。

Ep From and Ep To

Ep From、Ep To のピークポテンシャル範囲を入力します。プログラムはピークを探索する時、 特定の範囲の第一のピークが選択されます。異なる成分の場合、別の値を入力しなければなり ません。

勾配

成分のキャリブレーション曲線の勾配を入力します。成分濃度を算出するのに使用されます。 各成分の独自の勾配を有します。濃度レポートが選択され、勾配がゼロの場合、警告が表れます。 切片

成分のキャリブレーション曲線の切片を入力します。成分濃度を算出するのに使用されます。 各成分の独自の切片を有します。

ピーク波形

データの特性に応じてピーク波形を選択できます。ピーク波形はガウス、拡散またはジクモ イド波形です。

データ形式

濃度をレポートするためにオリジナルデータ、半微分、一次微分を選択できます。

Y Axis Title

プロットする Y 軸タイトル (濃度またはピーク電流)を入力します。

濃度単位

濃度単位、または次元 (ppm または M) を入力します。

レポート名

レポートテキストファイルを保存する場合、レポートファイル名を入力します。ファイル名 が存在する場合、無効の警告が表れます。ファイル名が入力されませんと、レポートは保存さ れません。

レポートデータ形式

濃度またはピーク電流をレポートにします。

ヘッダー

これはヘッダーテキスト編集ボックスです。ここにヘッダーを入力します。プロットする上 部にヘッダーを表示させる場合、グラフオプション コマンドを使用して、ヘッダーチェックボッ クスをチェックして下さい。

注意

これは注意テキスト編集ボックスです。ここに注意を入力します。注意はプロットに表示ざ れませんが、データファイルに保存されます。データに関するコメントを記入し、後でデータ の条件、目的について参照できます。

読込み

保存したデータを読込むためのコマンドです。

保存

データ保存するためのコマンドです。XY タイトル、単位、ヘッダー、注意がデータと一緒 に保存されます。

レポート

このコマンドを用いてデータファイルレポートを作成します。

プロット

このコマンドを用いますと、時間依存プロットを作成します。

操作法

このコマンドを用いると指定した電位範囲 内にあるピークの経時的な濃度変化をプ ロットすることができます。右記のような4 つのボルタモグラムAのピークの経時変化 を見たい場合は、まずピークのある電位範 囲を指定し、検量線から得られた傾きと切 片をダイアログボックスに入力します。プ ロットをクリックすると自動的に濃度計算 を行いグラフを描きます。X軸の時間は最 初に測定を行った時間(ボルタモグラムの 右上に示される)を0とし、それからの経 過時間で示されます。

8.5 スペシャルプロットについて

スペシャルプロットはターフェルプロットを解析します。特に、腐食電流、分極抵抗を算出 できます。ターフェルプロットは腐食速度の電気化学計測法として利用されています。ターフェ ルプロットは分極曲線 (logI vs E) の直線部を腐食電位に外挿して腐食電流を求めることができ ます。最初に、ターフェル測定したデータを読込みます。

pen				1
ファイルの場所の	Data 🔁			
Dops2bin Dopv2bin Dopv2bin Dopv2bin Dimp1bin Dimp2bin	Dingelbin Dingetbin Dietbin Nazbin Dieselbin Nav1.bin	Mev2bin Nov1bin Ocpt1bin Sev1bin Sev2bin Steev1bin	Shecv2bin Shecv3bin Saftbin Sw1bin Sw2bin	Ø
1 	-			
ファイルの振動団	Binary Data Files	(KDin)	<u>م</u>	NED ンセル

そしてデータ選択しますと、ターフェルプロットが表示されます。

ターフェル式
$$h = \frac{RT}{a \ nF} \ln i_0 - \frac{RT}{a \ nF} \ln i$$

(η:腐食電位)

次にターフェルプロットを解析するために、メ ニューコマンドの分析をクリックしますと、スペ シャルプロットコマンドが表れます。それを選択し ます。

本コマンドを選択しますと、腐食速度計算画面 が現れ、平衡電位、各カソード、アノードの電 位範囲も自動的に表示されます。そして、ター フェルプロットを参照しながら、アノード、カ ソードの腐食電位の直線範囲を入力します。

	×
5-980xt 1 💽	Сак
干約老位: 0284	キャンセル
カソードターフェル勾配機像範囲	ヘルフ(出)
0.124 10 0.224	
アノードターフェル勾配備在範囲	長は炊回のさよ
- アノードターフェル功記者在他回 0.344 10 0.444	電位範囲の入力
アノードターフェル切配機会検回 10344 10 0444 カソードターフェル勾配:	電位範囲の入力
- アノードターフェル対記者を絵回 - アノードターフェル勾配: - アノードターフェル勾配: - アノードターフェル勾配:	電位範囲の入力
アノードターフェル対記者な絵目 10344 10 0444 かソードターフェル勾配: アノードターフェル勾配: リー リー	電位範囲の入力

そして、計算ボタンをクリックしますと、分極抵抗、腐食電流は自動的に算出します。

腐食速度計算	×
データヤグメント	OK
平衡電位: 0.284	キャンセル
ーカソードターフェル勾配電位範囲	
- アノードターフェル勾配電位範囲 0.29 to 0.30	
カソードターフェル勾配: 0	自動計算
リニアー分極 7157	e+004
腐食電流 9 -339	e+000 / 計算型

このように簡単に必要なパラメータを求めることができます。

9.1 メカニズムコマンド

シミュレーションを行う前、反応メカニズム、各種の濃度、反応速度パラメータ、実験パラメー タ、他の変数を使用します。ディスクにシミュレーションに必要な全てのパラメータの保存ま たはディスクからの読込みができます。平衡濃度のチェックもできます。

システムはデジタルシミュレーションダイアログボックスを表示します:

×カニスム編集(E)	メカニズム選択(り)	OK
A+e=B C+e=D	Square Scheme	キャンセル
A = C B = D A + D = C + B		ヘルプ(H)
	EEEE	読込み(R)
	EC EC	保存(<u>S</u>)
	ECE	実験変数(P)
	Square Schen	反応速度低
研究中のシステム(v)	Diffusive 👻	濃度(<u>C</u>)
- - 無次元電流(b)		平衡(g)
- 平衡時の初期濃/	<u>黄0</u>)	
▼ 測定中の濃度プロ	コファイルの表示(型)	
農 度 範 囲: 1	- 距離範囲: 1	

次のオプションは各種の反応メカニズム、各種の濃度、反応速度パラメータ、実験パラメータ、 他の変数を設定できます。ディスクにシミュレーションに必要な全てのパラメータの保存また はディスクからの読込みができます。平衡濃度のチェックもできます。

メカニズム編集

この編集ボックスでは反応メカニズムを編集できます。研究したいメカニズムが前もって定 義されているかどうかを見るためにメカニズム選択ボックスをチェックします。メカニズム選 択ボックスのメカニズムをクリックしますと、メカニズムが編集ボックスに表れます。メカニ ズムが前もって定義されたものと同じでも、730E、750E と 760E 以外のモデルでは編集反応メ カニズムは働きません。この編集ボックスに入力した時、メカニズム選択ボックスは"ユーザー 入力"選択を変更します。

ユーザー入力の場合、各化学種を表すために A ~ Z の文字を使用します。文字 "e" は電子移動過程を表します。上下の文字は交換可能です。スペースは無視されます。ソフトウェアーは 電子移動、一次、二次化学反応の組合せをシミュレーションできます。最大 11 ステップ、9 化 学種を受入れできます。次の反応は合法的なフォーマットです。

(還元)
(酸化)
(化学反応)
(化学反応)
(化学反応)
(化学反応)

距離範囲

濃度プロフィール表示の距離スケールを入力します。範囲は 0.001 ~ 10 です。デフォルトは 1 です。

時間遅延ループ

デジタルシミュレーションのスピードは研究課題、使用するコンピューターの種類に依存し ます。スピードが速い場合、進行状況または濃度プロフィールのはっきりした変化を見ること ができないかもしれません。システムがスローダウンするための二点を計算している間の時間 遅延ループを挿入できます。パラメータの範囲は0~1×10⁶です。ベストな遅延ループ数は 研究課題、コンピューターのスピードで決ります。

読込みコマンド

ディスクに保存した*.sim ファイルを読込みできます。これらのファイルはシミュレーションに必要な全てのファイルを含みます。

システムは開くダイアログボックスを表示し、ファイルを選択します。

保存コマンド

このコマンドを起動するとシミュレーションに必要な全てのコマンドを保存できます。ファ イルの拡張子は.simです。

システムは名前を付けて保存ダイアログボックスを表示し、ファイル名を付けます。

実験変数コマンド

シミュレーション用の実験パラメータを設定するためにこのプッシュボタンを押します。 セットアップメニューのパラメータコマンドを通じて実験パラメータを変更できます。

システムはサイクリックボルタンメトリーパラメータダイアログボックスを表示し、使用したいパラメータを選択できます。

反応速度コマンド

このコマンドは、標準不均一系速度定数、標準レドックス電位、チャージ移動係数のような 電子移動反応速度パラメータを入力できます。化学反応のフォワード、バックワード速度定数 を入力できます。

システムはポテンシャル、速度定数ダイアログボックスを表示し、反応速度パラメータを入 力できます。

濃度コマンド

このコマンドは、各化学種の濃度、拡散係数を入力できます。

システムは拡散系の濃度、拡散係数ダイアログボックスまたは吸着系の表面濃度ダイアログ ボックスを表示し、濃度、拡散係数を指定できます。

平衡コマンド

このコマンドにより、任意の反応速度条件の各化学種濃度を観察できます。

システムは平衡時の濃度ダイアログボックスを表示し、平衡状態を観察できます。

変数コマンド

このコマンドにより、温度、電極面積などの変数を入力できます。

システムはシミュレーション変数ダイアログボックスを表示し、変数を入力できます。

このメカニズムを使用しませんと、他の操作を行う前にエラーメッセージが表れます。

メカニズム選択

前もって定義された反応メカニズムが 10 種類あります。これらは一般的な反応メカニズム です。最初の項目 "User Input" で、モデル 630E、660E、750E、760E のみでユーザが定義したメ カニズムを入力できます。

定義したメカニズムから他のメカニズムを得ることができます。例えば、EEC(electrotransferelectrotransfer-chemical reaction), ECC, CEC のメカニズムはいくつかの反応速度パラメータをゼ ロに定義することで ECEC メカニズムを得ることができます。不均一系の電子移動速度 k_oをゼ ロに定義しますと、相当する電子移動ステップには影響がありません。化学反応のフォワード、 リバース反応速度定数をゼロに定義しますと、相当する化学反応には影響がありません。

前定義した反応メカニズムをクリックしますと、メカニズムはメカニズム編集ボックスに表れます。"User Input" をクリックしますと、メカニズム編集ボックスは空になります。

研究中のシステム

ソフトウェアーは拡散または吸着系の一方をシミュレーションします。拡散系はプレーナー 拡散と仮定します。吸着系はラングミュアー等温線に従い、両酸化、還元物は強く吸着される と仮定します。

無次元電流

このボックスをチェックしますと、システムは無次元電流を算出します。これは他の理論結 果と比較する際に有益です。このボックスが未チェックですと、電流は濃度、電極面積、実験 のタイムスケールに応じて算出されます。

平衡時の初期濃度

このボックスをチェックしますと、システムはシミュレーションが開始した時、平衡時の濃 度を算出し、使用します。平衡状態は反応速度パラメータ、入力濃度に応じて算出されます。 このボックスが未チェックですと、シミュレーションは初期条件として入力濃度を使用します。

測定中の濃度プロフィールの表示

このボックスをチェックしますと、シミュレーション中ボルタモグラムに沿って濃度プロ ファイルを表示します。これは反応メカニズムを理解する上で大変良い助けになりますし、学 生教育に有益です。

ボルタモグラムの場合、電流の表示スケールはパラメータコマンドにより選択された感度ス ケールで調べられます。電流軸が高すぎる場合、ボルタモグラムはフラットラインとして表れ ます。電流軸スケールが低すぎますと、データポイントはあらゆる場所に表示できます。しか しながら、ポスト測定データはボルタモグラムを自動スケールで読めるようにします。ポスト 測定データ表示に応じて、次の測定で感度を変更できます。

濃度プロファイルの場合、相対濃度と距離が使用されます。全ての種のトータル濃度はまと めてセットされます。シミュレーション中の各種の濃度はこの値を参照します。まとめた距離 は 6*sqrt(Dt) にセットされます。また、D は拡散係数、t は任意の実験のトータル時間です。濃 度と距離のスケールを変更する場合、下記の2項目を参照して下さい。

濃度範囲

濃度プロフィール表示のスケールを入力します。範囲は 0.001 ~ 100,000 です。デフォルトは1です。
9.2 ポテンシャル、反応速度定数ダイアログボックス

このダイアログボックスに反応速度パラメータを入力できます。

后依	缅	波度	200000031980000000
	17	Mit ro-c	UK
A+e=B 2+o=D	A:	1.73249e=017	キャンセル
A=C	B:	1.47111∈-022	~ IL 7 (L)
3 = D	0:	1.7324e-016	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A + D = C + B	D:	1	
	<i></i>	Jie-003	

左に、反応メカニズムが一覧されます。左側に反応メカニズムを一覧します。これは各ステップの反応です。右側には反応のタイプに依存し、2または3パラメータの一方を利用できます。 編集ボックスに最適な値を入力します。

反応が電子移動を含む場合、不均一反応速度 k_o、標準酸化還元電位 E_o、チャージ移動係数 aを入力できます。

化学反応を含む場合、この化学反応のフォワード、バックワード速度定数を入力します。

いくつかの反応速度パラメータは既に調べられていることが分るかもしれません。これは n 種の濃度は n-1 反応プラス (+) 初期濃度により調べられます。種の数以上の式に出会うことがあ ります。式のいくつかは直線に関連していることがはっきりします。いくつかの反応の平衡定 数は調べられ、任意に割り当てされていません。さもなければ、システムは平衡に到着できま せん。ソフトウェアーはこの状態を検索し、最適な反応速度定数パラメータを割当てます。一 番上に、良く知られる反応速度パラメータを入れ、下に、より知られていないパラメータを入れ、 ソフトウェアーに反応速度パラメータを調べさせます。調べられた平衡定数は化学反応が関わ る場合、システムはバックワード速度定数を調べます。その場合もフォワード速度定数を入力 しなければなりません。電子移動過程が関わる場合、システムはスタンダード酸化還元電位を 調べます。更に不均一系の速度定数、*a*を入力します。

9.3 濃度、拡散係数ダイアログボックス

このダイアログボックスを使用すると、濃度、拡散係数の入力が行なえます。

反応	種	濃度/M	拡散係数/(cm2/s)	ОК
4+e=B	A:	1e-009	1e-005	キャンセル
)+e=D \=C	B:	0	1 e-005	ヘルプ(H)
8=D +D=C+B	О:	0	1e-005	
	D:	0	1e-005	

左に反応メカニズムが一覧されています。これは反応の各ステップを思い出させます。また、反応に 使用される種も一覧されます。右側には各種に相当する濃度、拡散係数を入力できます。

9.4 表面濃度ダイアログボックス

このダイアログボックスを使用すると、表面濃度が入力できます。

反応	種	濃度/(mol/cm2)	OK
A+e=B 2+o=D	A:	1e-009	キャンセル
4=C	В:	O	ヘルプの)
8=D A+D=C+B	0:	0	_
	D:	0	

左に反応メカニズムが一覧されています。これは反応の各ステップを思い出させます。また、 反応に使用される種も一覧されます。右側には各種に相当する表面濃度を入力できます。

9.5 平衡時の濃度ダイアログボックス

このダイアログボックスを使用すると、平衡時の濃度が観察できます。

反応	種	濃度	UK
A+e=B	A:	1.73249e-017	キャンセル
A=0	B:	1.47111∈-022	へルプ(H)
3=D 4+D=C+B	0:	1.7324e-016	
	D:	1e-009	

上に反応メカニズムを一覧しています。これは反応の各ステップを思い出させます。また、 反応に使用される種も一覧されます。右側には各種に相当する平衡時の濃度が表示されます。

9.6 シミュレーション変数ダイアログボックス

このダイアログボックスを使用すると、シミュレーションの変数を変更できます:

ミュレーション変数		
显度(T) (Deg C)	25	ОК
■極面積(<u>A</u>)(cm2)	1	キャンセル
⊧ャパシタンス(<u>O</u>)(ωF)	0	- ヘルプ(H)

温度

ここには温度を入力します。熱力学、反応速度パラメータは温度の関数です。

電極面積

平方センチメートル当りの電極面積を入力します。電流はプレーナー拡散または表面反応の 電極面積に比例します。

キャパシタンス

電極二重層のキャパシタンスを入力します。充電電流はシミュレーションでトータルの電流 応答に加算されます。

9.7 シミュレーションコマンド

このコマンドを使用しますと、デジタルシミュレーションが行えます。

シミュレーションを行う前に、メカニズム、濃度、反応速度パラメータ、実験パラメータを設定します。 シミュレーションを行う場合、装置とコンピューターを接続し、装置の電源を入れます。プログラム を起動する時、ハードウェアーの確認を行います。

シミュレーション中、スクリーングラフィックスをクリップボードにコピーできます。 ユーザー入力メカニズムは高機種のみで利用できます。

9.8.1. 概要

電気化学アナライザー専用ソフトウェアには、交流インピーダンスシミュレータという解析ソフトが 統合されています。

これを使うことで交流インピーダンス測定(A.C. impedance)の結果と、シミュレータ内で構築した 等価回路モデルを照らし合わせながら、等価回路の回路素子のパラメータについて求めたり、 作成した等価回路から模擬的に交流インピーダンス測定したりすることができます。

図 9.81.2. 等価回路の例 (簡単な randles 回路)

9.8.2. プログラムの開始手順

このプログラムを使用するにはまず電気化学アナライザーとソフトウェアが接続している状態である必要が あります。

そしてセットアップ/テクニックから"A.C. impedance"を選択し、"OK"ボタンを押すか、"A.C. impedance"を ダブルクリックすると電気化学測定法ダイアログボックスが閉じられます。

図 9.8.2.1. 電気化学測定法ダイアログボックスを開く

國化学測定法		交流インピーダンス密	数		
CALCEPENDER ExciteMerotocome Opolio Voltamentry Linear Sensep Voltamentry Staincox Voltamentry TabilPlot Ohronocoicone try Ohronocoicone tr	0K ++2/2/	文法インと	Image: Constraint of the second sec	Points / Do	OK \$+5283 AB70 <u>H</u> reade Freq •
Hydrodyn anio Modelation Voltarimetry Sweep-Step Fanctions Multi-Potential Steps		10 - 100 Hz	1	12	
n pedence – Time mpedence – Time mpedence – Potential		0.1 - 1 Hz 0.01 - 0.1 Hz	1	12	•
Chronopolenitionetry with Ouvrent Ramp		0.001 - 0.01 Hz 0001 - 001 Hz	1	12	•
F &-→1957€-F®		00001 - 0001 Hz		12	-

図 9.8.2.2. A.C.インピーダンスを選

図 9.8.2.3. 交流インピーダンス変数画

このとき、別の電気化学テクニックから"A.C. impedance"に変更すると、交流インピーダンス変数 ダイアログボックスが現れます。解析のみを行いたい場合は、"OK"ボタンまたは"キャンセル"ボタン を押して、このダイアログボックスを閉じます。 続いて、シミュレーション/メカニズムを選択すると、等価回路入力用のメカニズム編集画面が現れます。

ファイル(E) セットアップ(S) コントロール(C) グラフィックス(G) データ処理(D) 分析	Ͽ≷±Ͷ−Ͽ϶Ͻ <mark>Ε±−(⊻</mark>	/ ウインドウ(₩) ヘルプ(<u>H</u>)
	メカニズム(<u>M</u>) GV シミュレート(S)	= V 184 P II N?
Untitled	OV フィッティング(E)	

図 9.8.2.4. メカニズム編集画面を開く

Untitled	
0	۰

図 9.8.2.5. メカニズム編集画面

メカニズムモードに入ると、ツールバーはインピーダンスシミュレーション用のツールバーに切り替わります。 このツールバーには、等価回路に使用する抵抗器やコンデンサーなどの回路素子用と、各種コマンド用の ボタンが並んでいます。

🖺 🏔 Ra 🔹 🕂 🔹 🗰 🗤 🕂 🛲 🐨 🐨 🐨 🖾 🖾

図 9.8.2.6. インピーダンスシミュレーション用ツール

9.8.3. ツールバーボタンの説明

各ボタンの用途は以下のとおりです。

表 9.8.3.1. ツールバーボタンの一覧

アイコン	名称	説明
5	"元に戻す"ボタン	ボタンを押した回数分だけ描いた回路が以前の状態に戻る。
3	"やり直し"ボタン	"元に戻す"で以前の状態に戻された回路が、ボタンを押した回数 分だけ復元される("元に戻す"前の状態になる)。
Ra +	"再配列"ボタン	Ra<+++・ 回路素子や結線の配置を変更できます。配列は Mode1 4 種類あり、右側の三角のプルダウン用ボタンを押す Mode2 4 種類あり、右側の三角のプルダウン用ボタンを押す Mode3 と、 "mode 1"から "mode 4"まで選択 Tesるようになっています。 注意)この 4 つの配列は必ずしも理想的な回路を描くという わけではありません。再配列された等価回路を希望しない場合は、お手数で すがドラッグして手動で好みの状態に配列しなおしてください。
↔ •	"移動"ボタン	◆ ・・・ ※ 編集画面上に配置された回路素子がボタンを押した回 Bight Left Up Down "Up" "Down"の4方向から予め選択します。
• •	"全消去"ボタン	編集画面上の全ての回路素子、配線を消去します。
x	"切り取り"ボタン	選択した回路素子、配線を消去するときに使います。
-1444-	"抵抗器"ボタン	抵抗器を加えたいときにこのボタンを左クリックします。
ΗH	"コンデンサ"ボタン	コンデンサ(キャパシター)を加えたいときにこのボタンを 左クリックします。
m	"コイル"ボタン	コイル(インダクタ)を加えたいときにこのボタンを左クリック します。
-	"ワールブルグ インピーダンス"ボタン	無限拡散のワールブルグ(Warburg)インピーダンスを 加えたいときにこのボタンを左クリックします。
A	"constant phase element (CPE)"ボタン	constant phase element(CPE)を加えたいときにこのボタンを 左クリックします。
-002	"Cole-Cole インピーダンス"ボタン	球状拡散などのインピーダンスプロットが虚軸側につぶれた円をな しているときに便宜的に使用できます。
-CO}	"Cole-Davidson インピーダンス"ボタン	ネルンスト拡散などのインピーダンスプロットが高周波数側に直線部 分を持つ、つぶれた円を描く場合に、便宜的に使用できます。
H	"開く"ボタン	作成済みの等価回路ファイル(*.imp)を読み込みます。
	"保存"ボタン	作成した等価回路ファイル(*.imp)を保存します。
EI	"シミュレーション パラメーター"ボタン	インピーダンスシミュレーションのパラメーター(周波数範囲、各桁の 周波数範囲内ポイント数)を入力するボックスが現れる。
Sim	"シミュレーション" ボタン	作成済みの等価回路を利用したインピーダンスシミュレーション (交流インピーダンス測定を模擬的に行う)の開始ボタン。
Fit	"フィッティング" ボタン	交流インピーダンス測定の測定結果に基づき新たに構築した等価 回路のフィッティングをするときの開始ボタン。
	"中断"ボタン	インピーダンスフィッティングを中断するボタン。 フィッティング中のみ使用可能。
	"戻る"ボタン	メカニズム編集モードから交流インピーダンス測定の 結果表示画面に戻るボタン。

9.8.4. 等価回路モデルの描き方

簡単な等価回路モデルの作成方法について説明します。

メカニズム編集画面上部のツールバーから、加えたい回路素子のボタンを左クリックします。

114.1211年1月1日1日1月1日1日1日1日1日1日1日1日1日1日1日1日1日1日1	4
図 9.8.4.1. 抵抗器ボタンをクリックしている様子	
ドラッグしないで(左ボタンから指を離して)マウスを任意の位置まで移動させます	0
ポインタは手の形になり、回路素子をつかんでいます。	
2.412년만만 10월 10월 20월 20일 10월 20	
~~3	
図 9.8.4.2. 抵抗器を移動している様	
回路素子を配置したいところで左ボタンクリック。回路素子が赤く変わります。	
回路素子は赤いときに選択されており、切り取りボタンによる消去などができます。	
また回路素子は赤い状態から再度左クリックすると選択解除となります。	

図 9.8.4.3. 抵抗器を配置している様子

次に編集画面両端の黒い輪(電極に相当)にポインタを近づけると黒丸が現れる。この黒丸が現れると ころが電極や回路素子を結ぶ導線の始点、終点、分岐点となります。

C	-	1		
		2	ŝ.	

図 9.8.4.4. 黒丸が現れたところの図

黒丸が現れた状態から左ボタンを押して、ドラッグすると導線が引かれます。

図 9.8.4.5. 導線を引いている様子

ドラッグしたままポインタを回路素子の端点に近づけると黒丸が現れます。現れたところでドラッグをやめると、導線が引かれます。

図 9.8.4.6. 抵抗器の短点に黒丸が現れたところ

各回路素子は結線された状態で編集画面上を移動することができます。 これにより配置位置の修正を行うことができます。

図 9.8.4.7. 抵抗器を選択してドラッグしている様子

ドラッグしたボタンを離すとその位置に回路素子が再配置されます。

図 9.8.4.8. 抵抗器を再配置している様子

続いて ~ の要領で新たな回路素子を配置します。

図 9.8.4.9. 新たにコンデンサを配置している様子

~ の要領で回路素子の間を導線でつなぎます。

並列回路を作成したい場合は分岐させたいところにポインタを移動し、黒丸が現れたらドラッグします。

図 9.8.4.11. 抵抗器から導線を分岐している様子

回路素子の配置、結線が完成したら、各回路素子の上でダブルクリックするとパラメータ入力用の ダイアログボックスが現れるので、変更したい数値の入力や回路素子の名前の変更ができます。

図 9.8.4.12. 抵抗器のパラメータ変更の様子

ダイアログボックスの OK ボタンを押すと変更が反映されます。

図 9.8.4.13. 抵抗器のパラメーター変更後の様子

9.8.5 回路素子のパラメータ-

各回路素子のインピーダンスの定義式、パラメータダイアログボックスの様子および、編集画面上の表示を示します。

9.8.5.1. 理想的な回路素子

9.8.5.1.1. 抵抗器

a. 定義式

$$Z_R = R$$

ただし、R : 抵抗器の抵抗

抵抗のインピーダンス Z_R は周波数 f 及び 角周波数 (=2 f) の変化と無関係に一定となる。

b. パラメータダイアログボックス

抵抗	
名前(心)	OK キャンセル ヘルブ(H)

図 9.8.5.1.1. 抵抗器のパラメータ ダイアログボックス

表 9.8.5.1.1. 抵抗器のパラメータ ダイアログボックスの概

パラメーター	入力可能範囲	内容
名前(N)	半角9文字まで	任意の名前を入力し、抵抗器が複数ある 場合に区別できる。
値(V)(ohm)	0.001 ~ 1e+12	定義式のRに相当。単位はオーム()で 入力。

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面には以下のように入力した"名前"と"抵抗値"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

図 9.8.5.1.1.2. 抵抗器の編集画面上の表示 (左)数値固定なし (右)数

9.8..5.1.2. コンデンサ

a. 定義式

ただし、j: 虚数単位、 : 角周波数、 C: 静電容量

コンデンサのインピーダンス Z_c は周波数 f 及び角周波数 (=2 f)の関数であり、 入力した電流に対して出力する電位は 90 度位相が遅れます。

b. パラメータダイアログボックス

キャパシター			X
and a second	100		DK.
名前69	[C]		キャンセル
and the new officer	Tre-ow	1. INCL.	~M7@

図 9.8.5.1.2.1. コンデンサのパラメータ ダイアログボックス

表 9.8.5.1.2.1 コンデンサのパラメータ ダイアログボックスの概

パラメーター	入力可能範囲	内容
名前(N)	半角9文字まで	任意の名前を入力し、コンデンサが複数 ある場合に区別できる。
値(V)(Farad)	1e-12~1	定義式のCに相当。単位はファラッド(F)で 入力。

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面には入力した"名前"と"静電容量値"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

図 9.8.5.1.2.2. コンデンサの編集画面上の表示 (左)数値固定なし (右)数値固定

9.8.5.1.3 コイル(インダクター)

a. 定義式

ただし、j: 虚数単位、 : 角周波数、 L: インダクタンス

インダクターのインピーダンス Z_Lは角周波数の関数であり、入力した電流に対して 出力する電位は 90 度位相が進みます。

b. パラメータダイアログボックス

インダクター			
名前(N) 値(⊻)(Hunry)	0.001	□定	OK キャンセル ヘルプ(円)

図 9.8.5.1.3.1. インダクターのパラメータ ダイアログボックス

パラメーター	入力可能範囲	内容
名前(N)	半角9文字まで	任意の名前を入力し、コイルが複数ある場合 に区別できる。
値(V)(Hunry)	1e ⁻¹² ~ 1	定義式のLに相当。単位はヘンリー(H)で 入力。

表 9.8.5.1.3.1. インダクターのパラメータ ダイアログボックスの概要

また固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面には入力した"名前"と"インダクタンス"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

L 0.001 L 0.001

図 9.8.5.1.3.21 インダクターの編集画面上の表示 (左)数値固定なし (右)数値固定

9.8.5.2. 分布回路素子(素子の集合体)

9.8.5.2.1. ワールブルグ インピーダンス(無限拡散時)

a. 定義式

$$Z_{w} = \frac{I}{Y_{0}(i\omega)^{1/2}}$$

ただし、Yo: 角周波数が1のときのアドミタンス、j: 虚数単位、 : 角周波数

電荷移動律速と拡散律速の混合系ではナイキストプロットにおいて低周波数領域で 実数軸に対して約45°の傾きを持った直線が現れることがあります。 これがワールブルグインピーダンスと呼ばれる拡散過程に特有のインピーダンスです。 ワールブルグインピーダンス Zw は角周波数の平方根の関数です。

b. パラメータダイアログボックス

Warbure			×
*****	24		OK
dia cy	0.0001		440416
10.561(8)5365 072	lowers	1	×4.700

図 9.8.5.2.1. ワールブルグ インピーダンスのパラメータ ダイアログボックス

表 9.8.5.2.1. ワールブルグ インピーダンスのパラメータ ダイアログボックスの概要

パラメーター	入力可能範囲	内容
Name	半角9文字まで	任意の名前を入力し、複数ある場合に区別 できる。
Y0	1e⁻ ⁶ ~ 1	定義式の角周波数 が 1rad/sのときの アドミタンスの大きさを表す。

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面に入力した"Name"と"YO"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

 W
 0.0001
 W
 0.0001

 -[₩] -[₩]

図 9.8.5.2.2. ワールブルグ インピーダンスの編集画面上の表示 (左)数値固定なし (右)数値固定

9章.シミュレーションメニュー

9.8.5.2.2. constant phase element (CPE)

a. 定義式

$$Z_{Q} = \frac{1}{Y_{0}(j\omega)^{n}}$$

ただし、 Y_0 : 角周波数が1のときのアドミタンス、j: 虚数単位、 : 角周波数、 n : ひずみを表すパラメーター

抵抗器とコンデンサの並列回路のナイキストプロットは理想的には半円を描くが、実際の 交流インピーダンス測定結果においてこの半円が虚軸方向につぶれていることが多い。 そこで交流インピーダンス測定において特に電気二重層容量を表すコンデンサの変わりに 抵抗成分を持つ不完全なキャパシター(コンデンサ)として、constant phase element (CPE)を 使用することがあります。CPEのインピーダンスZo は角周波数 のn 乗の関数です。

b. パラメータダイアログボックス

コンスタント位相成分			
5810	101	-	OK,
n 2044	DS	T Gt	キャンをル
10 Gismana.cao'n)	00001	- I 00 E	へんプロ

図 9.8.5.2.2.1. CPEのパラメータ ダイアログボックス

表 9.8.5.2.2..1 СРЕのパラメータ ダイアログボックスの概

パラメーター	入力可能範囲	内容
名前	半角9文字まで	任意の名前を入力し、複数ある場合に区別
		できる。
n Value	0~1	n=1 のとき CPE は理想的な
		キャパシターとして、n=0 のとき CPE は
		純粋な抵抗としてふるまいます。
Y0 (1/ohm)	1e ⁻¹² ~ 1000	角周波数 が 1rad/sのときの
		アドミタンスの大きさを表す。

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面に入力した"名前"と"Y0"と"n Value"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

Q	0.0001	0.5	Q	0.0001	0.5
	-Q-		-[Q -	

図 9.8.5.2.2..2. CPEの編集画面上の表示 (左)数値固定なし (右)数値固

9.8.5.2.3.Cole-Cole インピーダンス

a. 定義式

$$Z_{M} = \frac{R_{M}}{1 + (j\omega\tau)^{\alpha}}$$

ただし、R_M:Cole-Cole インピーダンスの抵抗、j:

虚数単位、 : 角周波数、

: 緩和時間、 : ひずみを表すパラメーター

インピーダンスプロットが虚軸側につぶれた円をなしているときに便宜的に使用できます。

b. パラメータダイアログボックス

図 9.8.5.2.3.1. Cole-Cole インピーダンスのパラメータ ダイアログボックス

パラメーター	入力可能範囲	内容
Name	半角9文字まで	任意の名前を入力し、複数ある場合に区別
		できる。
R(ohm)	0.001 ~	Cole-Cole インピーダンスの抵抗。
	10e+012	
Arfa	0~1	=1 のとき.
		半円になる。
Тао	0.0001 ~ 0.9999	緩和時間(時定数)。

表 9.8.5.2.3.1. Cole-Cole インピーダンスのパラメータ ダイアログボックスの概要

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面に入力した"Name"と"R"と"Arfa"と"Tao"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

 CC
 1000
 0.5
 0.5
 CC
 1000
 0.5
 0.5

 -「□□-」
 -「□□-」
 -「□□-」
 -「□□-」
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□

(左)数値固定なし (右)数値固定

9.8.5.2.4Cole-Davidson インピーダンス

a. 定義式

$$Z_w = \frac{R_w}{(1+j\omega\tau)^{\alpha}}$$

ただし、R_M:Cole-Davidson インピーダンスの抵抗、j: 虚数単位、 : 角周波数、
 : 緩和時間、 : ひずみを表すパラメーター

インピーダンスプロットが高周波数側に直線部分を持つつぶれた円を描く場合に、便宜的に 使用できます。

b. パラメータダイアログボックス

Cole_Da	vidson	
<u>N</u> ame	CD	ок
<u>R</u> (ohm)	1000 Fix	キャンセル
<u>A</u> rfa	05 Fix	
<u>T</u> ao	05 Fix	

図 9.8.5.2.4.1. Cole-Davidson インピーダンスのパラメータ ダイアログボックス

表 9.8.5.2.4.1 Cole-Davidson インピーダンスのパラメータ ダイアログボックスの概要

パラメーター	入力可能範囲	内容
Name	半角9文字まで	任意の名前を入力し、複数ある場合に区別
		できる。
R(ohm)	0.001 ~	Cole-Davidson インピーダンスの抵抗。
	10e+012	
Arfa	0 ~ 1	=0.5 のとき高周波数側の傾きが 45 度に
		なる。
Тао	0.0001 ~ 0.9999	緩和時間(時定数)。

固定ボックスにチェックを入れるとフィッティング操作時に値が固定されます。

c. 編集画面上の表示

編集画面に入力した"Name"と"R"と"Arfa"と"Tao"が現れます。 値を固定した場合、編集画面の表示は青から茶色になります。

CD 1000 0.5 0.5 CD 1000 0.5 0.5 - (こD)- - (こD)-図 9.8.5.2.4.2. Cole-Davidson インピーダンスの編集画面上の表示 (左)数値固定なし (右)数値固定 9.8.6.インピーダンスシミュレーションの手順

作成した等価回路を使って模擬的に交流インピーダンス測定を行い、新たなインピーダンススペクトル を作成、表示させることができます。

- 2. シミュレーターの開始に従って、メカニズム編集画面を開きます。
- 4. 等価回路モデルの描き方に従い等価回路を作成するか、"開く"ボタンをクリックし、 作成済みの等価回路ファイルを読み出します。

	27-SABRIN			2 3
	>+(L06/9)	0-		
•	7+68-800	Teel ing		
	2+(+04mD	ang Filing (Purg)	 • ++>t 	26

図 9.8.6.1. 作成済みの等価回路ファイルを読み出している様子 続いて"シミュレーションパラメーター"ボタンをクリックします。

図 9.8.6.2. シミュレーションパラメーターを読み出している様子

"インピーダンスシミュレーションパラメーター"ダイアログボックスに数値を入力し、"OK"をクリック します。

高度波致(H)(Hu)	100000	ak
(5月送家(L) (+=)	1	キャンセル
Point per Decede Freg	10	0.1677040

図 9.8.6.3. シミュレーションパラメーター ダイアログボックス

	入力可能範囲	内容
高周波数(H)(Hz)	1e-5 ~ 1e+8	作成するインピーダンススペクトルの
		最大周波数
低周波数(H)(Hz)	1e-5 ~ 1e+8	作成するインピーダンススペクトルの
		最小周波数。
Point per Decade Freq	2 ~ 200	各桁の周波数範囲内でとるポイント数

表 9.8.6.1. シミュレーションパラメーター ダイアログボックスの概要

Sim"ボタンをクリックすると、交流インピーダンス測定のシミュレーションが開始されます。

図 9.8.6.4. シミュレーション開始の様子

シミュレーションの終了後、自動的に結果が表示されます。

図 9.8.6.5. シミュレーション結果表示の様子

9.8.7.等価回路フィッティングの手順

実際に測定された交流インピーダンスの結果を基に、予測して組んだ等価回路モデルの回路素子や インピーダンス成分のパラメーターを最適化する機能です。

例えば、下図の様な交流インピーダンス測定結果が得られた場合を例に説明します。

このナイキストプロットで、横軸の 100 以下は電荷移動律速の容量性半円を、100 以上は拡散律速に よる 45 度の直線を表していると思われます。

図 9.8.7.1. 測定した交流インピーダンスデータ

測定結果を開いた状態から2.シミュレーターの開始に従って、メカニズム編集画面を開きます。 Randles 型等価回路を作図します。

拡散律速の45度の直線があることから、ワールブルグインピーダンスWを電荷移動抵抗Rctと直列に配置します。また、容量性半円は虚軸側につぶれているため、ここではコンデンサーではなく、 CPEQcpeを使用しています。

このとき溶液抵抗 R sol を測定時のナイキストプロットの結果からおよそ 15 と予測できるので、R sol の抵抗値に仮の数値として 15 を入力し、固定しておくと初回のフィッティングの精度が増します。

図 9.8.7.2. 組み立てた等価回路とフィッティングの開始

上部の"Fit"ボタンを押します。

Ena - Gardie	Terrar = 25: 3 san.		
	G G G	0.0003829	0,4570
0 No 15			1.0
	Rict 0.737e11	W 8029+5 CW)	

図 9.8.7.3. フィッティング中の様子

更に溶液抵抗 R sol の固定を外して、電荷移動抵抗 R ct やワールブルグインピーダンス W などを固定し、再度フィッティングします。終了後、"戻る"ボタンでフィッティングの結果を確認します。

図 9.8.7.4. フィッティング結果の確認画面

元となる測定結果(赤線)とフィッティング結果(青線)を比較し、更に修正が必要な場合は、

シミュレーション/メカニズムを選択して、再フィッティングや等価回路の修正を行います。

図 9.8.7.5. 元のデータとの重ねがきの様子

10.1 データ情報コマンド

このコマンドを使用すると、現在のデータ情報を観察できます。 システムはデータ情報ダイアログボックスを表示します:

ソース: Experiment モデル: OHDoox Ist Derivative 日付: 10-Aus-199 Sth Derivative 時間: 14:11:32 Semi-Derivative Semi-Derivative Semi-Derivative	<u> へルブ(H)</u>
モデル: OHixxx 2nd Derivative 日付: 10-Aus-199 4th Derivative 時間: 14:11:32 Integration Semi-Derivative Semi-Integral Integral	
日付: 10-Aug-199 4th Derivative 5th Derivative Integration Semi-Derivative Semi-Integral Integration	
時間: 14:11:32 Integration Semi-Derivative Semi-Integral Integration	
Baseline Correction Data Point Removing Data Point Modifying Bkgnd Subtraction Signal Averaging X Math Operation	

次の項目は現在のデータの情報を観察できます。:

ファイル名

この編集ボックスは現在のデータのファイル名を表示します。それが保存されていない場合、 ファイル名は適当な名前を入力してください。

データソース

このボックスは測定またはシミュレーションのどちらかを表示します。

モデル

このボックスはデータが取得された時に使用されたモデルを表示します。

日付

このボックスはデータが取得された日付を表示します。

時間

このボックスはデータが取得された時間を表示します。

データ処理実行

このリストボックスはデータ処理のタイプが行われたことを表示します。データ処理のいく つかのタイプが実行された場合、多数の項目がチェックされます。これは以前このデータセッ トを行なっていることを知ることができます。

ヘッダー

このボックスはヘッダーを表示し、データプロットに表れます。

注

このボックスは実験についての注を表示します。注は実験の目的、条件を知らせます。

10.2 データー覧コマンド

このコマンドを使用すると、実験条件、結果、データの数値を一覧します。 一覧のフォーマットはファイルメニューのテキストファイルフォーマットにより変更できます。 システムはデーター覧ダイアログボックスを表示し、数値データを観察できます。必要ならば、スク ロールバーまたは一覧を使用できます。一覧が長すぎる場合、データの後半部分は切りつめられます。

データ→覧	×
Aug. 10, 1994 14:11:32	
Cyclic Voltammetry	OK
File: cv1.bin	
Data Source: Experiment	
Data Source: Experiment	
Data Proc: Smoothing	
Header: 0.5 mM Ferrocene in 0.1 M LiClO4 CH3CN, 2mm F	
Note:	
Init E (V) = 0.1	
High E(V) = 0.7	
Low E (V) = 0.1	
Init P/N = P	
Scan Rate (V/s)=10	
Segment = 2	
Sample Interval (V) = 0.001	
Quiet Time (sec) = 2	
Sensitivity (A/V) = 1 e-4	
Segment1:	
Ep = 0.439 V	
ip = -3.622e-5A	
Ab = -2.961e-70	

10.3 理論式コマンド

このコマンドを使用すると、電気化学テクニックに関連する理論式を観察できます。次の式の一覧が利用できます。理論式の詳細ならびに使用方法について "Electrochemical Methods" A.J. Bard and L.R. Faulkner, Wiley, New York, 1980 を参照して下さい。

理論式

一般式 記号と単位 リニアースィープボルタンメトリー サイクリックボルタンメトリー 階段波ボルタンメトリー ターフェルプロット クロノアンペロメトリー クロノクーロメトリー 微分パルスボルタンメトリー ノーマルパルスボルタンメトリー 矩形波ボルタンメトリー 交流ボルタンメトリー 第二高調波交流ボルタンメトリー i-t 曲線 バルク電気分解 ハイドロダイナミック変調ボルタンメトリー 交流インピーダンス クロノポテンショメトリー ポテンショメトリックストリッピング分析

10.4 クロックコマンド

このコマンドを使用すると、現在の年月日、時間を観察できます。

システムはクロックダイアログボックスを表示し、日時を観察できます。時間は定期的に更新できます。

クロック	and the second second	×
日付:	18-Dec-200	UK
時間:	17:15:09	

10.5 ツールバーコマンド

ファイルを開けるなどのシステムで頻繁に使われるいくつかのコマンドをツールバーに表示したり、 隠したりするためのコマンドです。ツールバーが表示される場合、メニューアイテムの横にチェックマー クが表示されます。

ツールバーはメニューバーの下に位置し、アプリケーションウィンドウの上に表れます。ツールバー はプログラムで使用される多くのツールに簡単にアクセスできます。

アプリケーションに応じて、ビューメニューからツールバーを追加または削除します。

10.6 ステータスバーコマンド

選択メニュー項目またはツールバーボタンを押したり、ファイル状況、現在のアクティブテクニック を実行したステータスバーを表示したり、隠したりするために使用します。ステータスバーが表示され た時、チェックマークがメニュー項目の次に表れます。

ステータスバーはアプリケーションウインドウの下に表れます。ステータスバーを表示したり、隠したりする場合、ビューメニューのステータスバーコマンドを用います。

スーテタスバーの左エリアはメニュー項目の動きを描写し、メニューを通じて矢印キーでナビゲート できます。このエリアはツールボタンを放す前に、押してツールバーの動きを描写するメッセージを示 します。実行したくないツールバーコマンドの内容を見て、ポインターをツールバーから離し、マウス ボタンを放します。

ステータスバーの右エリアはファイル状況と現在のアクティブテクニックを示します。

ALCOLOGICAL STREET OF THE		-IDIX
3+(1/2) ty+7+37(2) 12+0-1/2() 557+312(2)	デー9回戦回 分析 シュミレーション ピュー回 ウインドの回 ヘノ	117(H)
For Help, press FT	OV 3-Electrode	1

インジケーター

- ファイル名 データが保存されないまたはデータがデータ処理により変更されている場合、現在のデー タのファイル名は保存、または保存しないを選択します。
- テクニック 現在のアクティブテクニック
- 3-か4-電極 700E シリーズ用の3-電極か4-電極の設定。

内容

11.1 ヘルプトピックスコマンド

ヘルプのスクリーンを開くための表示コマンドです。スクリーンを開いて、使用するプログ ラム、各種リファレンス情報のステップ毎の取扱いにジャンプできます。

HP5/K01625 EC Application Help	? ×
キーワード 1. 探したい協与の最初の何文字がを入力してなさい①	
2 ターワードを5005し、3なに (表示)を5005して(2811位)	
control menasine dataproc menasine equations exit files: manasine erophics menasine printine and print preview setup menasine sim menasine sim menasine status bar toolber view menasine	
	**2724

プログラムのある部分のヘルプを知りたい場合、状況ヘルプコマンドを用います。ツールバー の状況ヘルプボタンを選択すると、マウスポインターは矢印、疑問符に変更します。別のツー ルバーボタンのようにアプリケーションウィンドウのある部分でクリックしますと、クリック した項目のヘルプトピックが表れます。

A-1 電気化学テクニックの略称

ACV:	AC Voltammetry (Phase Selective AC Voltammetry を含む)
D.E.	父流ホルタンストリー(位相選択父流ホルタンストリー)
BE:	Bulk Electrolysis with Coulometry バルク電気分解—クーロメトリー
CA:	Chronoamperometry
	クロノアンペロメトリー
CC:	Chronocoulometry
	クロノクーロメトリー
CP:	Chronopotentiometry
	クロノポテンショメトリー
CPCR:	Chronopotentiometry with Current Ramp
	クロノポテンショメトリー-電流ランプ
CV:	Cyclic Voltammetry
	サイクリックボルタンメトリー
DDPA:	Double Differential Pulse Amperometry
	ダブル微分パルスアンペロメトリー
DNPV:	Differential Normal Pulse Voltammetry
	微分ノーマルパルスボルタンメトリー
DPA:	Differential Pulse Amperometry
	微分パルスアンペロメトリー
DPV:	Differential Pulse Voltammetry
	微分パルスボルタンメトリー
ECN:	Electrochemical Noise Measurement 電気化学ノイズ測定
HMV:	Hydrodynamic Modulation Voltammetry
	ハイドロダイナミック変調ボルタンメトリー
IMP:	Impedance Spectroscopy
	インピーダンススペクトロスコピィー
IMP-t:	Impedance · Time
	インピーダンス – 時間
IMP-E:	Impedance · Potential
	インピーダンス-電位
IPAD:	Integrated Pulse Amperometric Detection
	積分パルスアンペロメトリー検出
ISTEP	Multi Current Steps
	マルチ電流ステップ
i-t:	i-t Curve
	アンペロメトリー i-t 曲線
LSV:	Linear Sweep Voltammetry
	リニアースィープボルタンメトリー
NPV:	Normal Pulse Voltammetry
	ノーマルパルスボルタンメトリー
OCPT:	Open Circuit Potential · Time
	オープンサーキットポテンシャル-時間
PSA:	Potentiometric Stripping Analysis
	ポテンショメトリックストリッピング分析

QCM:	Quartz Crystal Microbalance
	水晶振動子微量大柈
SCV:	Staircase Voltammetry
	階段波ボルタンメトリー
SHACSV:	Second Harmonic AC Stripping Voltammetry (Second Harmonic Phase Selective AC Stripping Voltammetry)
	第二高調波交流ストリッピングボルタンメトリー (第二高調波位相選択交流ストリッピングボルタ
	ンメトリーを含む)
SSF:	Sweep-Step Functions
	スィープ-ステップファンクション
STEP:	Multi-Potential Steps
	マルチーポテンシャルステップ
SWV:	Square Wave Voltammetry
	矩形波ボルタンメトリー
TAFEL:	Tafel Plot
	ターフェルプロット
TPA:	Triple Pulse Amperometry
	トリプルパルスアンペロメトリー

A-2 電気化学モデル 400C 高速水晶振動子微量天秤測定

Model 400B Time-Resolved Electrochemical Quartz Crystal Microbalance

水晶振動子微量天秤 (QCM) は超高感度質量測定機能を持った音波マイクロセンサーの一種です。例として、 基本周波数 7.995 MHz の水晶振動子を使用する場合(当社の装置仕様)、1 Hz の正変化は表面積 0.196 cm² の水晶 に吸着された 1.34 ng の試料に相当します。

QCM とその電気化学との組み合わせ (EQCM) は結晶に沈積した金属の検出、ポリマーフィルム中のイオン移動過程の観測、バイオセンサー開発と、吸着物質の吸着力学の研究に広く利用されています。EQCM の実験では作用電極における電位、電流、電荷や、周波数変化に相当する取り込み等、様々な電気化学パラメータの測定は同時に行います。次のページの図-1に示す測定設定を使用すると、同時測定を行えます。モデル 400C シリーズの全てのモデルでは特定電位波形(例:サイクリックボルタンメトリー測定用の三角電位波)の応用、電流の連続測定と、周波数カウンターはパソコン制御のポテンショスタット/周波数カウンターを利用して行います。

モデル 400C シリーズは水晶振動子、周波数カウンター、高速デジタル信号発生器、高感度高分解能データ取 り込み回路、ポテンショスタットと、ガルバノスタット(モデル 440C のみ)から構成されます。QCM とポテン ショスタット、ガルバノスタットを統合させて、EQCM の測定が簡単に、便利になります。周波数直接測定を含み、 モデル 400C シリーズは高速で測定が行えます。QCM の周波数信号は標準参照周波数から計算されます。このテ クニックが QCM 信号のサンプリングに必要な時間を大いに減少し、QCM 信号を高速に処理します。直接計算法 を使用しますと、1 Hz の QCM 分解能は1秒のサンプリング時間が必要、0.1 Hz の分解能は10秒のサンプリング 時間が必要です。本モードは1/1000 秒単位で QCM 信号をより良い分解能で測定することを可能にします。スキャ ン速度が1 V/s の時に、QCM データは記録されます。

EQCM セルに3つの丸いテフロンが含まれています(次ページ、図-1参照)。全体の高さは37 mm で、直径35 mm です。上部は参照電極と対電極を固定するためのセルのふたです。マニュアルパージ用の2 mm の穴が2つあります。真中の部分は溶液用のセルボディです。下部は組み立て用です。ねじ4本を使用し、セルボディの下部、間中部を同時に固定します。水晶振動子はセルボディの下部、真中の間に置きます。シールは上記の4つのねじによって圧着させた2つの0リングを通します。水晶振動子の直径は13.7 mm です。金電極の直径は5.1 mm です。

ポテンショスタット		ローパス信号フィルター	自動とマニュアル設定
ガルバノスタット (モデル 440	0C)	CV と LSV スキャン速度	$0.000001 \sim 2,000 { m V/s}$
電位範囲	$-10 \sim 10 \mathrm{V}$	スキャン中の電位上昇	0.1 mV @ 100 V/s
立ち上がり時間	< 2 µ s	CAとCCパルス幅	$0.0001 \sim 1,000 m ~sec$
出力電圧	± 12 V	CAとCCステップ	320
3-または 4- 電極配置		DPV と NPV パルス幅	$0.0001 \sim 10 m sec$
電流範囲	250 mA	SWV 周波数	$1 \sim 100 \mathrm{kHz}$
参照電極入力インピーダンス	$1 \times 10^{-12} \Omega$	ACV 周波数	$1 \sim 10 \text{ kHz}$
感度スケール	$1 \times 10^{-12} \sim 0.1 \text{ A/V}$ 、34 レンジ	SHACV 周波数	$1 \sim 5 \text{ kHz}$
入力バイアス電流	< 50 pA	自動電位電流ゼロ化	
電流測定分解能	< 1 pA	RDE 回転制御出力	0~10 V (430A 以上)
CV の最低電位増加	100 µ V	電位と電流	アナログ出力
電位更新速度	1 MHz	セル制御	パージ、撹拌、ノック
データ取込み	16 bit @ 200 kHz	データ長	128 K ~ 4096 K の選択
周波数分解能	< 0.1 Hz	シャーシ寸法	$31 (W) \times 28(D) \times 12(H) cm$
QCM 最高サンプリング速度	500 Hz	発信器ボックス	$6.6 \text{ (W)} \times 12 \text{ (D)} \times 3.9 \text{ (H) cm}$
iR 補償	自動、マニュアル	重量	6.8 kg

仕様

機能 400C 410C 420C 430C 440C サイクリックボルタンメトリー (CV) リニアスイープボルタンメトリー (LSV) & 階段波ボルタンメトリー (SCV) #.& ターフェルプロット (TAFEL) クロノアンペロメトリー (CA) クロノクーロメトリー (CC) 微分パルスボルタンメトリー (DPV) #.& ノーマルパルスボルタンメトリー(NPV)^{#,&} 微分ノーマルパルスボルタンメトリー (DPNV)^{#,&} 矩形波ボルタンメトリー (SWV)[&] 交流ボルタンメトリー (ACV) ^{#,&,\$} 第2高調波ボルタンメトリー (SHACV) #.&.\$ アンペロメトリー I-t 曲線 (I-t) 微分パルスアンペロメトリー (DPA) ダブル微分パルスアンペロメトリー (DDPA) トリプルパルスアンペロメトリー (TPA) クーロメトリーによる電気分解(BE) ハイドロダイナミック変調ボルタンメトリー (HMV スィープ - ステップファンクション (SSF) マルチ - ポテンシャルステップ (STEP

	A-2-1	モデル	400C	シ	リーフ	ズの	テ	クニ	ニッ	ク
--	-------	-----	------	---	-----	----	---	----	----	---

#: 関連するポーラログラフィックモードは行えます。

フルバージョン CV シミュレーター

限定バージョン CV シミュレーター

&: 関連するストリッピングモードは行えます。

クロノポテンショメトリー (CP)

オープン回路電位 – 時間 (OCPT)

水晶振動子微量天秤 (QCM)

RDE 制御 (0 ~ 10 V 出力)

ガルバノスタット

IR 補償

電流ランプによるクロノポテンショメトリー CPCR)

ポテンショメトリックストリッピング分析 (PSA)

\$: 位相選択データは位相を利用できます。

水晶振動子は7.995 MHzの周波数を有し、両面に金を蒸着してあります。金を蒸着した水晶振動子面は電解質溶液と接触し、 作用電極として使用します。金の表面写真は下図を参照して下さい。

図 - 1. EQCM の組み立て図

付録

A-3 モデル 600E シリーズのテクニック

テクニック	600E	602E	604E	606E	608E	610E	620E	630E	650E	660E
CV										
LSV ^{&}										
SCV ^{#,&}										
TAFEL										
CA										
CC										
DPV ^{#,&}										
NPV ^{#,&}										
DNPV ^{#,&}										
SWV ^{&}										
ACV #,&,\$										
SHACV #,&,\$										
i-t										
DPA										
DDPA										
TPA										
IPAD										
BE										
HMV										
SSF										
STEP										
IMP										
IMP-t										
IMP-E										
CP										
CPCR										
ISTEP										
ECN										
PSA										
OCPT										

#: ポーラログラフィーモードを実行できる

&: ストリッピングモードを実行できる。

\$: 位相選択データ利用可能

測定パラメータのダイナミックレンジ

パラメータ	モデル 6xxE	テクニック
電位 (V)	$10 \sim +10$	
電流 (A)	$0 \sim \pm 0.25$	
感度 (A/V)	$1 \times 10^{-12} \sim 0.1$	
スキャン速度 (V/s)	$0.000001 \sim 20,000$	CV, LSV
パルス幅 (sec)	$0.0001 \sim 1000$	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング幅 (sec)	$0.0001 \sim 10$	DPV, NPV
周波数 (Hz)	$1 \sim 100,000$	SWV
周波数 (Hz)	$1 \sim 10,000$	ACV
周波数 (Hz)	$1 \sim 5,000$	SHACV
周波数 (Hz)	$0.0001 \sim 100,000$	IMP

テクニック	700E	702E	704E	706E	708E	710E	720E	730E	750E	760E
CV										
LSV ^{&}										
SCV #,&										
TAFEL										
CA										
CC										
DPV ^{#,&}										
NPV ^{#,&}										
DNPV ^{#,&}										
SWV ^{&}										
ACV #,&,\$										
SHACV #,&,\$										
i-t										
DPA										
DDPA										
TPA										
IPAD										
BE										
HMV										
SSF										
STEP										
IMP										
IMP-t										
IMP-E										
CP										
CPCR										
ISTEP										
PSA										
ECN										
OCPT										

#: ポーラログラフィーモードを実行できる &: ストリッピングモードを実行できる。 \$: 位相選択データ利用可能

デュアルチャンネル測定が利用できるテクニックは CV,LSV,SCV,CA,DPV,NPV,DNPV,SWV,i-tです。

測定パラメータのダイナミックレンジ

パラメータ	モデル 7xxE	テクニック
電位 (V)	$10 \sim +10$	
電流 (A)	$0 \sim \pm 0.25$	(1Ch only)
電流 (A)	$0 \sim \pm 0.125$	(Dual Ch only)
感度 (A/V)	$1 \times 10^{-12} \sim 0.1$	(Both Ch)
スキャン速度 (V/s)	$0.000001 \sim 20,000$	CV, LSV
パルス幅 (sec)	$0.0001 \sim 1000$	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング幅 (sec)	$0.0001 \sim 10$	DPV, NPV
周波数 (Hz)	$1 \sim 100,000$	SWV
周波数 (Hz)	$1 \sim 10,000$	ACV
周波数 (Hz)	$1 \sim 5,000$	SHACV
周波数 (Hz)	0.0001 ~ 100,000	IMP

付録

A-5 モデル 800D シリーズのテクニック

テクニック	810D/812D	820D/822D	830D/832D	840D/842D	850D/852D
サイクリックボルタンメトリー					
リニアースィープボルタンメトリー					
階段状ボルタンメトリー	-	-	-	-	
ターフェルプロット	-	-	-	-	
クロノアンペロメトリー	-	-			
クロノクーロメトリー	-	-			
微分パルスボルタンメトリー	-				
ノーマルパルスボルタンメトリー	-				
矩形波ボルタンメトリー	-				
アンペロメトリー		-			
交流ボルタンメトリー	-	-	-	-	
第二高調波ボルタンメトリー	-	-	-	-	
微分パルスアンペロメトリー		-			
ダブル微分パルスアンペロメトリー		-			
トリブルパルスアンペロメトリー		-			
積分バルスアンペロメトリー検出	-	-	-	-	
バルク電気分解ークーロメトリー	-				
ハイドロダイナミックモジュレーション	-	-	-	-	
ポテンショメトリックストリッピング分析	-	-			
クロノポテンショメトリー	-	-	-		
クロノポテンショメトリー / 電流ランプ	-	-	-		
Open Circuit Potential-Time					
Sweep-Step-function	-	-	-		
Multi-potential step	-	-	-		
Multi-current-step	-	-			
電気化学ノイズ測定	-	-	-	-	
CV シミュレーション (機能限定版)			-	-	-
CV シミュレーション	-	-			

#: ポーラログラフィーモードを実行できる &: ストリッピングモードを実行できる。

パラメータ	レンジ	テクニック
電位 (V)	$-10 \sim +10$	
電流 (A)	$0 \sim \pm 0.010$	
感度 (A/V)	$1 \times 10^{-12} \sim 0.001$	
スキャン速度 (V/s)	$0.000001 \sim 500$	CV, LSV
パルス幅 (sec)	0.001 - 1,000	CA, CA
パルス幅 (sec)	$0.001 \sim 10$	DPV, NPV
サンプリング間隔 (sec)	$0.00005 \sim 100$	i-t
周波数 (Hz)	$1 \sim 10000$	SWV

測定パラメータのダイナミックレンジ

モデル 8xxD: シングル (8x0D) またはデュアル (8x2D) チャンネル電気化学センシング。高感度、低ノイズ 24-bit A/D コンパー ター。バイポテンショスタットなので RRDE に使用できる

A-6 モデル 900C/920C 走査型電気化学顕微鏡

1989年に紹介された走査型電気化学顕微鏡 (SECM) は界面近傍の化学的な変化を高解像度で観察する ための装置です。サンプル表面近傍をスキャンして微小探針で起こる反応を画像化します。SECM は表 面の化学物質の反応像、反応速度の定量を行うために使用します。多くの SECM の研究成果は世界中の 研究室から報告されています。応用分野としては腐食研究、細胞膜の研究、液液界面の研究に用いられ ており、更に用途が広がっています。SECM を用いたシングルセルから酸素等の測定も報告されています。 モデル 900 SECM はテキサス大学のグループと共同開発しました。

モデル 900 走査型電気化学顕微鏡はファンクションジェネレーター、バイポテンショスタット、高解 像度データ処理、三次元マイクロポジショナーから構成されています。

1. A. J. Bard, F.-R. F. Fan, J. Kwak, and O. Lev, Anal. Chem. 61, 132 (1989); U.S. Patent No. 5,202,004 (April 13, 1993).

2. A. J. Bard, F.-R. Fan, M. V. Mirkin, in Electroanalytical Chemistry, A. J. Bard, Ed., Marcel Dekker, New York, 1994, Vol. 18, pp 243-373.

機能	詳細			詳細
マイクロポジショナー	X,Y,Y 解像度	4 nm 以下		ウインドウズソフト
	X,Y,Z 移動距離	5.0 cm		アンペロメトリーとポテンショメトリー
	Closed Loop Piezo (920C)	1.6 nm で 85u m の移動距離		一定の高さと一定電流モード
	プローブポテンシャル	± 10 V	之一仙	リアルタイムで絶対と相対距離表示
	差分電位	± 10 V	ての世	リアルタイムでプローブとサンプル電流表示
バイポテンショスタット	出力電位	± 12 V		電流 vs.X プロット
	電流感度	$10^{-12} \sim 10^{-1} \text{ A/V}$		電流 vs.Y プロット
	最大電流	± 250 mA		電流 vs.Z プロット
	ADC 解像度	20 bit/1 kHz, 24 bit/10 Hz		電極表面観察
	走査プローブテクニック			腐食
	プローブ走査曲線,プローブ接近曲線			生物学サンプル
テクニック	SECM イメージ, Surface Patterned Conditioning			固体の分解
	CV, LSV, SCV, Tafel, CA, CC, DPV, NPV, DNPV, SWV,			液体/液体の海面
	ACV, SHACV, i-t, DPA, DDPA, TPA, BE, HMV, SSF, STEP,			薄膜
	IMP, IMPT, IMPE, CP, CPCR, ISTEP, PSA, ECN, OCPT			

モデル 900C/920C 仕様

SECM イメージ

プローブ接近カーブ

A-7 Model 1000C マルチポテンショスタット

Mode I0xxCシリーズエレクトロケミカル検出器はウインドウズ上でパソコンで制御する電気 化学測定器であり、高い信頼性・応用性を有する測定装置です。ポテンショスタットとファン クションジェネレーターがドッキングし、アンペロメトリック、CV 測定を8チャンネルで実 行できます。操作は簡単で測定モードを選択し、パラメータを入力すると、自動的に測定を開 始します。第一チャンネルの印加電圧範囲は±10 V、その他7チャンネルの印加電圧範囲は± 10 V です。測定電流範囲は±10mA です。各チャンネルは ON/OFF 制御、電位、感度を独立し て設定できます。各チャンネルデータは別々に表示、重ね書き等も行えます。

テクニック	1000C	1010C	1020C	1030C
CV	0	\bigcirc	0	\bigcirc
LSV	0	\bigcirc	\bigcirc	\bigcirc
CA	-	-	-	\bigcirc
CC	-	-	-	\bigcirc
DPV	-	-	\bigcirc	\bigcirc
NPV	-	-	\bigcirc	\bigcirc
SWV	-	-	\bigcirc	\bigcirc
i-t	\bigcirc	\bigcirc	-	\bigcirc
DPA	-	\bigcirc	-	0
TPA	-	\bigcirc	-	0
SSF	-	-	\bigcirc	0
STEP	-	-	-	0
OCPT	0	0	0	0

電気化学測定テクニック

○は標準、- はオプションとなります

電気化学的な仕様

パラメータ	モデル 1000C シリーズ
ポテンシャル範囲	± 10 V
電流範囲	± 10 mA
感度	$1\times10^{\text{-9}}\sim0.001$ A/V
入力インピーダンス	$1 \times 10^{12} \Omega$
電流測定分解能	< 1 pA
最大電位速度	500 Hz
最大サンプリング速度 Hz	1000
データサンプリング	16 bit@1 MHz max
ADC 分解能 @10Hz	24bit
スキャン速度 (V/sec) CV	$10^{-6} \sim 5000$
パルス幅 CA, CC	$0.1 \sim 1000 m ~sec$
パルス幅 DPV, NPV	$0.001 \sim 10 ~{ m sec}$
周波数 SWV	$1 \sim 100 \text{ Hz}$

A-8 モデル 1100C シリーズパワーポテンショスタット / ガルバノスタット

モデル 1100C シリーズはバッテリー、腐食、電気分解、鍍金等のような大きな電流を必要とする用途に開発 しました。電流範囲は±2.0 A です。コンプライアンス電圧も±25 V あります。機器の構成はデジタル関数発生器、 データサンプリングシステム、電流信号のフィルター、iR 補償機能、ポテンショスタット、ガルバノスタット(モ デル 1140C)です。電位の制御範囲は±10 V です。同様なシステム構成はモデル 600E とモデル 680C との組み合 わせとなります。モデル 1100C シリーズはコンパクトで、モデル 600E シリーズの構成に比べて価格的に安価です。 電流も 10pA までの計測も可能です。CV によるスキャン速度も 2000 V/sec までの速度でスキャンできます。

ポテンショスタット		CV と LSV スキャン速度	$0.000001 \sim 2000 { m V/s}$
ガルバノスタット (モデル 1140C)		スキャン中の電位増加分	0.1 mV
電位範囲	$-10 \sim 10 \text{ V}$	CAとCCパルス幅	$0.001 \sim 1,000 ~{ m sec}$
立ち上がり時間	< 2 µ s	CAとCCステップ	320
出力電圧	± 25 V	DPV と NPV パルス幅	$0.001 \sim 10~{ m sec}$
3-または 4- 電極配置		SWV 周波数	$1 \sim 100 \mathrm{kHz}$
電流範囲	± 2 A	自動電位電流ゼロ化	
参照電極入力インピーダンス	$1 \times 10^{-12} \Omega$	ローパス信号フィルター	自動とマニュアル設定
感度スケール	$1 \times 10^{-10} \sim 0.1 \text{ A/V}$ 、10 レンジ	セル制御	パージ、撹拌、ノック
入力バイアス電流	< 100 pA	iR 補償	自動、マニュアル
電流測定分解能	< 1 pA	データの長さ	$128\mathrm{K} \sim 4096\mathrm{~K}$
電位更新速度	1 MHz	寸法	$31 (W) \times 28 (D) \times 12 (H) cm$
データ取込み	16 bit @ 200 kHz	重量	6.8 Kg

仕様

モデル 1100B シリーズパワーポテンショスタットの種類

テクニック	1100C	1110C	1120C	1130C	1140C
サイクリックボルタンメトリー (CV)					
リニアスイープボルタンメトリー (LSV) ^{&}					
階段波ボルタンメトリー (SCV) ^{#,&}					
ターフェルプロット (TAFEL)					
クロノアンペロメトリー (CA)					
クロノクーロメトリー (CC)					
微分パルスボルタンメトリー (DPV) ^{#,&}					
ノーマルパルスボルタンメトリー (NPV) ^{#&}					
微分ノーマルパルスボルタンメトリー (DPNV) ^{#,&}					
矩形波ボルタンメトリー (SWV) ^{&}					
アンペロメトリー I-t 曲線 (I-t)					
交流ボルタンメトリー (ACV)					
第二高調波ボルタンメトリー (SHACV)					
微分パルスアンペロメトリー (DPA)					
ダブル微分パルスアンペロメトリー (DDPA)					
トリプルパルスアンペロメトリー (TPA)					
クーロメトリーによる電気分解 (BE)					
スィープ - ステップファンクション (SSF)					
マルチ - ポテンシャルステップ (STEP)					
クロノポテンショメトリー (CP)					
電流ランプによるクロノポテンショメトリー (CPCR)					
ポテンショメトリックストリッピング分析 (PSA)					
オープンサーキットポテンシャル (OCPT)					
CV シミュレーター (Limited version)					
CV シミュレーター (Full version)					

A-9 モデル 1200B シリーズ電気化学アナライザー

モデル 1200B シリーズ電気化学アナライザーはバッテリー駆動で、場所を 選ばずに何処でも計測できるポテンショスタットです。操作は測定モードを選択 し、パラメータを入力すると、自動的に測定を開始します。

電気化学的な仕様

USB 接続

モデル 1200B シリーズは手の ひらサイズのハ ンディーなポテ ンショスタット です。背面のパ ネルには電極

ケーブル端子、USB ケーブル端子があります。

パラメータ	モデル 1200B シリーズ
ポテンシャル範囲	± 2.4 V
出力電圧	± 7.5 V
電流範囲	± 2 mA
感度	$1 \times 10^{-10} \sim 0.001 \text{A/V}$
入力インピーダンス	$1 \times 10^{12} \Omega$
最小電位分解能	100 µ V
最大データ長	128,000
電流測定解像度	< 5 pA
ADC 分解能 @10Hz	16 bit
スキャン速度 (V/sec) CV	$10^{-6} \sim 10$
パルスステップ CA, CC	$1 \sim 320$
パルス幅 DPV, NPV	$0.001 \sim 10~{ m sec}$
周波数 SWV	$1 \sim 5,000 \text{Hz}$
ポテンショスタット	シングル
大きさ	$22(W) \times 11(D) \times 2.5(H) \text{ cm}$

電気化学測定テクニック

テクニック	1200B1202B	1205B/1206B	1210B/1212B	1220B/1222B	1230B/1232B	1240B/1242B
サイクリックボルタンメトリー	0	0	0	0	0	0
リニアースィープボルタンメトリー	0	0	0	0	0	0
階段波ボルタンメトリー	-	-	-	-	-	0
クロノアンペロメトリー	0	-	-	0	0	0
クロノクーロメトリー	0	-	-	0	0	0
微分パルスボルタンメトリー	-	-	0	\bigcirc	0	0
ノーマルパルスボルタンメトリー	-	-	0	0	0	0
微分ノーマルパルスボルタンメトリー	-	-	-	-	-	0
矩形波ボルタンメトリー	-	-	-	-	0	0
交流ボルタンメトリー	-	-	-	-	-	0
第二高調波ボルタンメトリー	-	-	-	-	-	0
アンペロメトリー	-	0	-	0	0	0
微分パルスアンペロメトリー	-	-	-	-	0	0
ダブル微分パルスアンペロメトリー	-	-	-	-	0	0
スィープ - ステップファンクション	-	-	-	-	-	0
マルチ - ポテンシャルステップ	-	-	-	-	-	0
トリブルパルスアンペロメトリー	-	-	-	-	0	0
オープンサーキットポテンシャル	0	0	0	0	0	0
CV シミュレーター (Limited version)	0	0	0	0	-	-
CV シミュレーター (Full version)	-	-	-	-	0	

A-10 モデル 200(B) ピコアンペアブースター

モデル 200(B) ピコアンペアブースター (PAFC) を用いますと、数ピコアンペアの微少電流を容易に測 定できます。 モデル 200 はモデル 600/A、700/A シリーズの機器に利用できます。また、200B は 600B/ C/D/E、700B/C/D/E と 800B に利用できます。バイポテンショスタット 700/A/B/C/D/E と 800D は第一チャ ンネルのみ有効となります。

ピコアンペアブースターを接続する前、装置の電源をオフにします。ピコアンペアブースターを装置の 裏面パネルの Electrodes コネクターに接続します。装置の裏面パネルの Cell Control コネクターにピ コアンペアブースターの DB-25 ケーブルを用いて接続します。電源をオンにして下さい。

DB-25 コネクターは電源を供給し、ラインを制御します(付録のケーブル、接続を参照して下さい)。 DB-25 コネクターが接続されていない場合、ピコアンペアブースターを使用不可にしても、測定は行え ます。この場合、ファラデーケージは効果的です。

ガスパージを行う場合、セルスタンドの背面にあるガスパージのコネクターにガス栓を接続します。 ピコアンペアブースターを接続し、感度スケールを1×10⁸A/V以下にしますと、ピコアンペアブー スターは使用可能になります。さもなければ、使用できません。ピコアンペアブースターは自動的に スィッチを切り替えます。

ピコアンペアブースターはターフェル、バルク電気分解、インピーダンスのような自動感度を使用す るテクニックでは使用できません。これらのテクニックでは接続を外す必要はありません。しかし、ク ロノポテンショメトリー、ポテンショメトリックストリッピング分析のようなガルバノスタットテク ニックでは、ピコアンペアブースターは外しておいて下さい。

モデル 600 シリーズは 1 × 10⁸ ~以下の感度にてピコアンペアブースターが必要になります。

A-11 モデル 684 マルチプレクサーコマンド

モデル 684 マルチプレクサーはモデル 400/A/B/C、600A/B/C/D/E,700A/B/C/D/E、800B/C/D、 900B/C、1100A/B/C シリーズと一緒に使用できます。マルチプレクサーを用いて一連の計測を 行うためのコマンドです。必要なハードウェアーはモデル 684 マルチプレクサーです。モデル 684 の最低チャンネルは 8 です。チャンネル数は 8 の倍数、x16,24, x32・・・となり、最大 64 チャンネルまで用意しています。

マルチプレクサーの1電極当たりのケーブルは4本(作用、センス、参照、カウンター電極) から構成されています。最大 64 セルまで接続でき、自動計測が行えます。

マルチプレクサーには2つのマクロコマンドがあります。

1つは "mch:##" 各チャンネルを設定できます。

他のマクロコマンドは "mchn" は For......Next loop で使用されます。For.....Next loop を使用 することにより、" mchn" で特定のチャンネルをスキップして測定します。

A-12 モデル 680C アンペアブースター

モデル 680C アンペアブースターを使用すると、電流は2A まで測定できます。モデル 680C は機器 モデル 600E に互換性を持っています。

アンペアブースターを接続する前に、装置の電源をオフにします。モデル 680 の4- ピン din コネクター をモデル 600E の裏面パネルの electrodes コネクターに接続します。両装置のセルコントロールポートも 直接 3-ft DB-25 ケーブル(モデル 680 附属ケーブル)で接続します。モデル 6xxE とモデル 680 の両装 置の電源をオンにします。一般的にモデル 6xxE を先にオンにしてからモデル 680C をオンにするのは最 適です。電源をオフにする場合、逆の順番で行ってください。

セルコネクターは 5- ピンコネクターで、4 つのセルリードがあります。緑色のクリップは作用電極、 白いクリップは参照電極、赤色のクリップは対電極、黒いクリップは 4- 電極構成のセンシング電極用で す。4- 電極構成の使用不使用はコントロールメニュー下のセルコマンドの 4-electrodes ボックスをチェッ クする、しない、ことによって設定します。4- 電極オプションを ON にすると、黒いリード線を作用電 極に接続させます (緑色と黒いリード線をショートさせます)。4- 電極構成は電流が比較的高い場合に 有効です。コネクターや、リレーや、回路基板の抵抗を減少させます ((0.2 ~ 0.3 オームぐらい)。

アンペアブースターが接続される場合、パージ、ノック、撹拌等のセルコントロール信号は不能にな ります。

アンペアブースターは低電流測定にも可能です。10 pAまでの低電流も測定できます。スキャン速度が50 mV/s 以上の時、ライン周波数ノイズを削減するためにファラデーケージが必要になります。

アンペアブースターの周波数応答はモデル 6xxE 装置より少し低くなります。高速測定の場合、アンペアブースターを切り離さなければなりません。

ハードウエアに問題が起きたら、アンペアブースターを接続されない状態で、ハードウエアのテスト を行ってください。モデル 6xxE がテストが終わってから、アンペアブースターを接続して基準抵抗で アンペアブースターをテストしてください。CV を使用すると、電位/抵抗の傾きを持った直線を見る ことができます。

A-13 モデル 682 液 / 液界面アダプター

モデル 682 は電化移動、ケミカルセンサー、薬物放出、溶媒抽出などの液 / 液界面研究には重要です。 液 / 液界面研究は通常 2 本の参照電極、2 本のカウンター電極を使用します。改造したポテンショスタッ トは二相中の二つの参照電極の電位差をコントロールします。一方、二つのカウンター電極を通過する 電流を測定します。モデル 682 液 / 液界面インターフェースアダプターはモデル 700E に互換性がありま す。この機種はユーザーにとっては完全自動の測定器です。殆どの電気化学手法が使用できますが、ガ ルバノスタット、バイポテンショスタット機能を持っていません。

モデル 400A/B/C、600A/B/C/D/E、700B/C/D/E、800B/C/D、900B/C、1100/A/B/C シリーズならびに 4 電極システムはモデル 682 液 / 液界面インターフェースアダプターを使用しなくとも直接液 / 液界面測 定が行えます。

A-14 CV 電極 & アクセサリー

●特注タイプの電極も製作いたしますのでご遠慮なくお問い合わせ下さい。

カタログ No.	品名および明緒	田	
002013	PTE 白金電極	OD:6mm	ID:1.6mm
002313	SPTE 白金電極	OD:3mm	ID:1.6mm
002012	GCE グラッシーカーボン電極	OD:6mm	ID:3.0mm
002411	GCE グラッシーカーボン電極	OD:6mm	ID:1.0mm
002412	GCE グラッシーカーボン電極	OD:3mm	ID:1.0mm
002014	AUE 金電極	OD:6mm	ID:1.6mm
002314	SAUE 金電極	OD:3mm	ID:1.6mm
002408	PFCE-3 カーボン電極 *	OD:6mm	ID:3.0mm
002409	PFCE-1 カーボン電極 *	OD:6mm	ID:1.0mm
002252	Pyrolytic Graphite 電極 (Basal Plane)	OD:6mm	ID:3.0mm
002253	Pyrolytic Graphite 電極 (Edge Plane)	OD:6mm	ID:3.0mm
002011	AGE 銀電極	OD:6mm	ID:1.6mm
002210	CPE カーボンペースト電極	OD:6mm	ID:3.0mm
002016	NIEニッケル電極	OD:6mm	ID:1.5mm
002017	CUE 銅電極	OD:6mm	ID:1.6mm
002018	FEE 鉄電極	OD:6mm	ID:1.5mm
002019	PDEパラジュウム電極	OD:6mm	ID:1.6mm
002319	SPDE パラジュウム電極	OD:3mm	ID:1.6mm
002223	SCPE マイクロカーボンペースト電極	OD:3mm	ID:1.6mm
002250	白金メッシュ電極	80mesh	35 × 25mm
002251	金メッシュ電極	100mesh	35×25 mm
002005	MPTE 微小白金電極	OD:4mm	ID:10 μ m
002015	MPTE 微小白金電極	OD:4mm	ID:15 μ m
002003	MPTE 微小白金電極	OD:4mm	ID:25 μ m
002009	MPTE 微小白金電極	OD:4mm	ID:100 μ m
002004	MAUE 微小金電極	OD:4mm	ID:25 μ m
002006	MAUE 微小金電極	OD:4mm	ID:10 μ m
002010	MAUE 微小金電極	OD:4mm	ID:100 μ m
002007	MCE マイクロカーボンファイバー電極	OD:4mm	ID:7 μ m
002002	MCE マイクロカーボンファイバー電極	OD:4mm	ID:33 μ m
002271	MCUE マイクロ銅電極	OD:4mm	ID:25 μ m
000007	カーボンファイバー電極キット		
001085	バイコールガラス棒タイプ	$3^{\phi} \times$	10cm
001087	バイコールガラス管タイプ	ID:5.9mm,OD:7	mm,長さ:10cm

*PFCE(Plastic Formed Carbon 電極)は三菱鉛筆(株)と独立行政法人産業技術総合研究所との共同研究により開発されたものです。 * 使用の際には、添付の注意事項をお読みください。作用電極は常温、常圧にて使用して頂くためのものです。

付録

A-15 ケーブルと接続

1. 通信ポート接続 (DB-25 コネクター) ピン 機能 2 受信 3 発信 7 デジタルグラウンド 2. セルコントロール接続 (DB-25 コネクター) ピン 機能 1 2 3 アナロググラウンド 4 5 -15V (<20 mA 負荷) 6 +5V (<100 mA 負荷) デジタルグラウンド 7 8 撹拌 (アクティブレベルはセルコントロールにて設定) 9 ノック (アクティブローパルス) 10 外部デバイスセンス1 外部デバイスセンス2 11 外部デバイス制御1 12 外部デバイスセンス3(外部トリガー入力、TTL 信号、アクティブロー) 13 14 予備 予備 15 16 17 +15V (<20 mA 負荷) 18 19 外部デバイス制御2 外部デバイス制御3 20 パージ 21 (アクティブローレベル) 22 外部デバイス制御4 23 24 外部デバイス制御5 25 予備

セルコントロールポートは攪拌、パージ、ノックの制御に使用します。互換性についてはお持ちのセルスタンドのマニュアルをご参照下さい。ジャンパー、ケーブルによる接続が必要になる場合もあります。

赤)
トド
)

*: この電極は4電極構成に使用します。液/液界面測定が行えます。この場合、赤クリップはフェーズ1 のカウンター電極に接続します。白のクリップは同じフェーズの参照電極に接続します。緑のクリップ はフェーズ2のカウンターに接続します。黒クリップはフェーズ2の参照電極に接続します。 4 電極構成は接触抵抗(クリップ、コネクター、リレーの開閉)と回路抵抗を削減します。大電流測定 (>100 mA) と低インピーダンスセル (<1 Ω) に重要です。しかし、小電流測定(<100 mA)と高インピーダンスセルには 好ましくありません。

4 電極構成を使用する場合、コントロールメニューのセルコマンドを使用し、"4 electrode "オプションをチェックします。センシング電極を作用電極と一緒に接続します。

4 電極構成を使用しない場合、セルコントロールダイアログボックスの "4 electrode "オプションが未チェック であることを確認して下さい。さもなければ、ノイズや他の問題が発生する可能性があります。

3電極構成を使用する場合、センシング電極を接続しないで下さい。

4. RDE コントロール接続 (バナナジャック)

赤	信号
黒	アナロググラウンド

5. 前面パネルの信号出力 (9- ピン D コネクター)

1	電流出力*
2	電流2出力(バイポテンショスタット)
3	電位出力
4	外部信号入力**
5	外部電位入力 ***
6	グラウンド
7	グラウンド
8	グラウンド
9	グラウンド

: 電流は電流出力表示値 (V) 感度 (A/V) により算出されます。

**:入力電位の範囲は±10Vです。入力ステージの入力インピーダンスは10KQです。高電位の信号にはディバ イダー抵抗を使用しなければなりません。小さい電圧範囲(<0.1V)での信号の場合、信号にファクター10または 100を乗じて増幅することができます。増幅が必要な場合、お問い合わせ下さい。

***: 外部電位入力は無効です。有効にする場合、機器の内部でジャンパーを行う必要があります。詳細についてはお問い合わせ下さい。

A-16 ソフトウェアーの更新

機器のコントロールソフトは2つの部分から構成されています。1つは PC サイドのソフトウェアーです。機器 の内部にもソフトウェアーがあります。ソフトウェアーの更新は PC サイドが中心となります。しかし、機器内部 のソフトウェアーも更新することがあります。機器内部のソフトウェアーはフラッシュメモリーに記録されます。 機器のソフトウェアーを更新する場合、PC 用のソフトと機器用のソフトがメーカーから提供されることがありま す。PC サイドのソフトのインストール方法については2章に記載されています。機器内部のソフトはヘキサデシ マルファイルとなります (CHI7xx.HEX これは 7xxB モデル番号となります)。機器内部のソフトウェアーを更新す る場合、測定器のプログラムを更新コマンドを使用します。

ファイル名:	c:/chi/chi660b.hex	Browse	OK
		Undeta	

Browse ボタンを選択し、ヘキサデシマルファイルを選択します。次に、アップロードボタンをクリックし、プログラムをフラッシュメモリーにダウンロードします。

ソフトの更新を失敗した場合、エラーメッセージが表示されます。もう一度同じ操作を行って下さい。 ダウンロードが成功しましたら、確認のメッセージが表れます。これで、機器を使用することができます。

A-17 トラブルシューティング

症状	原因	対処
	電源が入っていない	装置の電源を入れる
	ケーブルが接続されていない	ケーブルを接続する
	ケーブル不良	ケーブルの確認や交換
		セットアップメニューのシステムコマンドを使用
	週信小一下の設定にミヘルのる	してポートの設定を行う
		システムにネットワークカードやファックス/モ
通信の失敗		デムカードがないことを確認します。使用した場
	パソコンの問題	合、カードを外し、再度行って下さい。問題が解
		決されない場合、他のパソコンで試してみて下さ
		<i>۷</i> ۷
		装置の電源を切り、再度入れます。パソコンもリ
	靜電気 	セットします。
	計算時間が長い場合	お待ち下さい
	通信の失敗	装置、コンピューターをリセットする。
ウインドウズアブリケーションエ 		プログラムの再スタート、またはコンヒューター
ラー		のリセット
 ハードウェアーテストエラー		ハードウェアーアストを繰り返しより。エフーメッ
		セージを記録し、販売店に連絡してトさい。
電流応答がない	电極ノーノルルコ女肌 これしい ない	電極ケーブルのチェック
	かまたはケーノルの損協 	 データの読みが10 x 咸度スケールを超えている場
	信頼性の低いデータ転送	△ 匠田は通信ポートにとれます。ネットローク
		合、原因は運信小「ドによりより。 イノドノーノ よ 畑 (ハ) マデタい、 即のコンパー、 カ、た体田)
		を解除して下さい。別のコノヒユーターを使用し
		て下さい。 左海ボ会昭電塩の海鉄邨にトラップされているか
	や四母にのくいど、ガンフが古い	スペルジ 照 电 極 り 仮 和 即 に ド ノ ノ ノ こ 4 し く い る ル
	参照电極のインヒータンスが高い	をナエックして下さい; Vycor 元姉の参照电極に入
		探します。 ファラデーケージを伸田して下さい・箆2音の役に
	電気的にノイズのある環境	ノノノノーノーンで以用してしてい、ルムモンスに
ノイズのひどいデータ	 大きな二重層キャパシタンスによ	ユンビントを参照してくたさい。 コントロールメニューのセルコマンドを使用して
		マニュアル的に安完化コンデンサーをオンにする
		使用できる最高感度スケールを使用、フィルター
	信号が弱すぎる	を設定する
		システムにネットワークカードやファックス/モ
		 デムカードがないことを確認します。使用した場
	 パソコンの問題	合、カードを外し、再度行って下さい。問題が解
		沖されたい場合 他のパソコンで試してみて下さ
	 咸度スケールが高すぎる	v. 咸度スケールを低くする
 記録されたデータがレンジ外		ハードウェアーをテストするためにセットアップ
	ハードウェアーの問題	メニューのハードウェアーテストコマンドを使用
	感度スケールが高すぎる	感度スケールを低くする
	プリンタードライバーに互換性が	Y軸タイトルの回転を行う場合、グラフィックメ
ダ1トルを読つに刀凹に凹翔	ない	ニューのフォントコマンドを使用
 毎理なデフォルト状況	ソフトのバージョン、設定ファイ	古い*.cfg fileを削除すると、自動的に新しい設定
	ルが違う	ファイルが作成されます
	ハードウェアーが接続されていな	 装置を接続し、電源を入れる
シミュレーションブロクラムが走 	() ()	
らない	モデルにより user input メカニス	 前もって定義されたメカニズムを使用して下さい。
	ムを利用できない	

A-18 メンテナンス、サービス

15~28℃範囲の室温で使用して下さい。

装置は非常にデリケートな電子機器ですので、ご自分で修理はしないで下さい。装置が最適に機能しない場合、 販売店までご相談下さい。

A-19 保証について

この度は当社製品をお買い上げ頂き有難うございました。本製品は当社の厳密な製品検査に合格したものです。 お客様の正常なご使用状態の下で故障した場合、購入日より一年間無償で修理させて頂きます。添付の製品保証書 をご提示の上、弊社代理店にお申しで下さい。

但し、保証期間内においても次の事項に起因する場合は有償修理となります。

1. 誤ってご使用になった場合の故障

- 2. 当社に無断で改造された場合の故障
- 3. 据付後、移動あるいは輸送にって生じた故障
- 4. 地震、火災などの天災等による原因が本器以外の事由によるもの

その他これに準ずるもの、及び製品保証書の提示がない場合

A-20 ソフトウエアの保証について

BASではお客様に納品する前、当社にて事前にソフトウェアー、ハードウェアーのチェックを行なった後、御 届けするようにシステムを取っています。万が一検収時にソフトとハードが動作をしない場合、責任をもって製品 の交換又は無償で修理を行ないます。

また、ソフトウエアは買い取り商品ではなく、使用権の販売になります。お客様は、買ったソフトを転売する ことはできません。また、基本的にバグがあった場合でも、開発側では、そのバグに対してすぐに修正することは 出来ませんし、そのバグによって起きた損失に対価をはらう義務もないことになっています。もし、バグのがある 場合、次のバージョンで対応させて頂きます。

BASでは、基本的にコンピュータ関連のメンテナンスはセンドバック方式をとります。お客様のコンピュータ をおあずかりする方法です。但し、他社のハードウエアの故障の場合、メーカー側の保証期間内の場合はそのメー カーの保証にしたがってユーザであるお客様が修理依頼を行って頂くことになります。メーカー保証の製品の修理 が、BASに来た場合、メーカーに対する対応などで多少修理に時間を必要となります。これは、ユーザの管理をメー カー側で行っているためです。メーカーの保証登録は納品時点でお客様に実施して下さい。そうしないと、メーカー のサポートが受けられません。

OS のバージョンアップ又は変更について

ウィンドウズ Xp をウィンドウズ7に変更する。又は、ウィンドウズ7の英語バージョンを日本語バージョンに 変更する。

A-20-1. お客さまが行った場合

保証期間内であっても、それに起因する修理(調整)は有償となります。また、変更や調整する手助けを行うことはできません。変更する方法は、マイクロソフトのインフォメーションに聞いていただくことになります。

2.BAS で行った場合

保証は BAS が行います。ただし、自社のソフトの動作確認までで、他メーカーのソフトの動作保証はできません。

お客様が準備したコンピュータに BAS のソフトをインストール場合

1. お客さまがインストールする場合

インストールに起因する不具合については、有償となります。インストールの手順については添付のマニュアル をご参照下さい。ただし、一度 BAS でインストールしたコンピュータが故障した場合などの特殊な場合は除きます。 その他、装置全体の動作確認などに時間をとられることが考えられますので注意が必要です。(最近のウィンド ウズのプレインストールモデルのコンピュータは、購入しただけでは動作しません。かならずウィンドウズのイン ストール作業が必要となります。機種により 15 から 60 分程度かかります)

A-20-2.BAS でインストールする場合

インストールは基本的に有償となります。ユーザー先で行う場合は、別途費用となります。また、モデムがイン ストールされている機種では、USB ポートが使用できない機種がありますが、必要に応じてハードウェアーの調 整も行い、動作確認まで行ないます。機種によって異なります。

ソフトウエア動作不良

1. お客様が設定を変更した場合

出荷時点と異なる環境の場合、保証期間内であっても有償となります。他の会社のソフト/ハードをインストー ルして動作しなくなった場合、問題になるプログラム/ハードを削除することがあります。

2.BIOS の設定などの設定不良

基本的に保証期間内であれば無償です。ただし、出張作業の場合は有償となります。BIOSの設定は機種によって異なります。

3. ウイルス

ウイルスが内部に検出された場合、ハードディスク、BIOS などを全て初期化する必要がありますので、セットアップに時間がかかります。この修理の場合、修理後3ヵ月の無償期間は適用されません。

操作説明

BASのソフトウエアを動作させるための操作説明を中心に行ないます。ウィンドウズの説明、他社ソフトの操 作説明は行うことはできません。最近のソフトウェアーは高度な知識が必要なため完全な説明を行なうためには別 途専門家の派遣が必要となりますので、有償となります。 A-21.外部トリガー入力について

ALS電気化学アナライザー専用ソフトは、外部トリガー信号を開始信号として電気化学測定を行うことができます。これによって TTL レベル信号を出力するデバイスと測定のタイミングを同期させることができます。

"Cell control"端子と接続

 ALS電気化学アナライザーの背面に"Cell Control"用の D-sub25ピンコネクター(メス)があり、外部トリガ ー入力にはこれを使用します。(図 A-21-1) このうち 13 ピン(トリガー信号入力端子)を外部信号源の TTL レベル出力端子とつなぎ、7ピン(グラウンド端 子)を同じ外部信号源のグラウンド端子と接続します。(図 A-21-2左)

なお外部トリガー入力には TTL レベル信号が使用されます。外部信号源からの信号は TTL レベル、 つまり高電圧(ハイ)として 3V~5V の電圧レベルを、低電圧(ロー)として-0.2V~0.8V の電圧レベルを 出力することが前提となります。13ピンでの入力の場合、普段、電圧はハイのレベルを保っており、 トリガーによって生じるローの状態を認識して測定開始します("アクティブロー"といいます)。

そして 13 ピンはリード線が接続されていない状態では、アナライザー内部の 10k プルアップ抵抗を 介して、5V(すなわち"ハイのレベル")の電圧がかけられ、安定を保っています。 このため外部トリガー信号源を介さず、単純に 7 ピンと 13 ピンを短絡させることでも13ピンはローの 状態(約 0V)になり、トリガー信号を発生させて測定開始することができます。(図 A-21-2右)

図 A-21-1. 背面パネル "Cell control"の様子

図 A-21-2. 外部デバイスとの接続模式図(左)と、13ピン及び7ピンを短絡させた場合(右)

1. 予め、メニューバーのセットアップからテクニックやパラメータなど測定条件の設定を行っておきます。(図 A-21-3)

K化学テクニック① 0K	初期電位0,XV) 0.6 0.6
++>t	高電位HOV3 06 キャンセル
ucilo Voltamme Iry	
new Sweep Voltammetry	最終電位 (V) () ()
the Plot	初期スキャン/優性P) Nerative a
ron camperometry	7± e';##(0))/(e) [0]
Recential Pulse Voltammetry	2
rmal Pulse Voltammetry Rerential Normal Pulse Voltammetry	メイーノモンメノト(m) [************************************
uare Wave Voltammetry	0.23 Managed and a longer
d Harmonic A.D. Voltammetry	静止時間(@)(sec) 2
perometric i-t Curve Recential Pulce Amperometry	感度(SXA/V) 1e-005 ↔
uble Differential Pulse Amperometry	· · · · · · · · · · · · · · · · · · ·
per Pulse Amperometry egrated Pulse Amperometric Detection	
Ik Electrolysis with Coulome try Andreamic Medicities Voltamma try	●位 (V) (* Off
eep-Step Functions	養分電位E(V)→ □
Iti-Potential Steps). Impedance	新度 (A/V) 「Scan
vedence - Time	
ron opoten tiome try	These investment and the contract of the
ronopotentiometry with Current Ramp	「スキャン速度が0.005 V/s以下の場合、自動感度(A)
ポーラログラフィー モード(P)	厂 最终電位有効
	「 スキャン速度が0.25 V/s以下の場合、播助信号を記録

図 A-21-3. テクニック選択ボックス(左)及び CV 測定時のパラメータ設定ボックス(右)

2. 続いてメニューバーの、コントロール/測定状況を選択します。(図 A-21-4)

ALS/CHI760C 電気	化学アナライザー	
ファイルモン セットアップ(S)	コントロール(0) グラフィック	ス(g) データ絶理(g) 分析 シミュレーション ビュー(V) ウインドウ(H)
Distriction	漸定(B) 特種(/再間) 激定律止(S) スキャン反転(g) ぜい能力(2) ぜい能力(2)	
	测定状况(y)_	
	織り速し測定(血)。	
	マルチプレクサ(g)	
	200322/P(M)_	
	Qpen Gircuit Potential (内留賞 フィルター設定(f) セル(G) ステッファンクジェン(f) 前於理(g) 回転ディスク電像(b)	
	ストリッピングモード(の)_	
5		
		CV 3-Electrode

 ダイアログボックス左側にある、の"外部トリガー測定"にチェックを入れます。(図 A-21-5) この状態のときの"静止時間前後のトリガーの選択"のボックスで"Before"を選択して、の右の測定ボタンを押すとすぐに待機状態に入り、外部トリガー信号を受けた時点から静止時間、

で"After"を選択するとの測定ボタンを押した直後に1.で設定された静止時間を経過してから 待機状態に入り、更に外部トリガー信号を受けると実際の測定に移ります。

 □ 固定有にキャリブレーション(2) □ 満定有に接続のチェック(6) □ 自然電位を初期電位として使用 > 外部トリガー測定 □ 次の満定の所確(度(6) □ 満定後のスムージング(m) □ 満定職のパージ(P) □ 満定職の提择(S) 	制定的のSMCEATO)- [1 「 静止時間の間, 8250年 GBJ	0K キャンセ ヘルブの 潮変® 用できる場合)
レベルで測定中止	 ・静止時間の中止 ・ ・ ・	静止時間前後のトリガーの選択 (* Betwe C After
	C @≵(ω)<	電流パイアス
	静止時間中の奄波表示 (F No (数字 () グラフ	No Defore Run After Quiet Time Manual (A) 0

図 A-21-5. 測定状況ボックス(ALS700D シリーズの場合)

(注意 1) 機種により"静止時間前後のトリガーの選択"ボックスがない場合がありますが、この場合は常に "Before"の状態であり、測定ボタンを押すとすぐに待機状態に入ります。

"After"の状態にはなりません。

(注意 2) 機種により"静止時間前後のトリガーの選択"ボックスの位置が異なる場合があります。

図 A-21-6は外部トリガー電圧の様子と連動するアナライザーの測定画面の様子について時間軸を元に並べて 図示したものです。

図 A-21-6. 外部トリガー電圧とアナライザーの測定画面の様子

(注意) 測定終了後に再度外部トリガー入力による測定を行う場合は、外部トリガーの電圧レベルを

"ハイ"に戻しておく必要があります。

図 A-21-7 は"before"の状態で外部トリガー入力を待っている状態のチャート画面の様子です。 左下に"Waiting for trigger"と表示されます。

図 A-21-7. 外部トリガー入力信号の待機状態 (before)

図 A-21-8 は"after"の状態で外部トリガー入力を待っている状態のチャート画面の様子です。 左下に"Waiting for trigger"と表示されず、右上のタイマーが静止時間分のカウントを行い、 終了後もマイナスのカウントをとる状態で待機を続けます。

図 A-21-8. 外部トリガー入力信号の待機状態 (after)